DS4 - Lundi 4 décembre 2023

Consignes

Tous les feuillets doivent être identifiables et numérotés par le candidat. Les candidats sont invités à soigner la présentation de leur copie, à mettre en évidence les principaux résultats, à respecter les notations de l'énoncé et à donner des démonstrations complètes - mais brèves - de leurs affirmations.

Exercice 1: tirages dans une urne

Soit n un entier supérieur ou égal à 2 . On considère une urne contenant n boules indiscernables numérotées de 1 à n.

On tire au hasard une boule et on la retire de l'urne ainsi que toutes les boules ayant un numéro supérieur à celui de la boule tirée. On réitère l'expérience jusqu'à ce que l'urne soit vide et l'on note X_n la variable aléatoire égale au nombre de tirages réalisés pour vider l'urne.

Pour tout entier i, on pourra noter N_i la variable aléatoire égale au numéro de la i-ème boule tirée s'il y a eu au moins i tirages, et 0 sinon.

- 1. Trouver la loi de X_2 puis donner son espérance et sa variance.
- 2. Trouver la loi de X_3 et donner son espérance.
- 3. Donner l'ensemble des valeurs que peut prendre X_n .
- 4. Déterminer $P(X_n = 1)$ et $P(X_n = n)$.
- 5. Simulation informatique:

On suppose que l'on a déjà importé le package numpy.random as rd Ecrire une fonction Python, intitulée def Exercice1(n): qui simule cette expérience aléatoire et renvoie la valeur de X_n .

6. Prouver que pour tout $k \geq 2$, on a :

$$P(X_n = k) = \frac{1}{n} \sum_{i=2}^{n} P(X_{i-1} = k - 1).$$

- 7. En déduire que $E(X_{n+1}) E(X_n) = \frac{1}{n+1}$.
- 8. En déduire une expression de $E(X_n)$ sous forme d'une somme.
- 9. (a) Prouver que pour tout entier $k \ge 2$, on a : $\int_k^{k+1} \frac{1}{t} dt \le \frac{1}{k} \le \int_{k-1}^k \frac{1}{t} dt$.
 - (b) En déduire que $\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\sim} \ln(n)$.
 - (c) En déduire un équivalent de $E(X_n)$ quand n tend vers $+\infty$.

Exercice 2 : la loi de Weibull

Soit λ un réel fixé strictement positif. Soit X une variable aléatoire, dont la fonction de répartition $F_{\lambda}: \mathbb{R} \to \mathbb{R}$ est telle que

$$\forall x \in \mathbb{R}, \quad F_{\lambda}(x) = \left\{ \begin{array}{cc} 1 - \exp(-\lambda . \sqrt{x}) & \text{ si } x > 0 \\ 0 & \text{ si } x \leq 0 \end{array} \right.$$

- 1. Justifier que X est une variable aléatoire à densité. On dit alors que X suit la loi $\mathcal{W}(\lambda)$.
- 2. Donner une densité de X.
- 3. Etudier la convexité de F_{λ} sur $]0,+\infty[$ et la dérivabilité de F_{λ} en 0 à droite .
- 4. Représenter l'allure de la courbe représentative de F_{λ} dans le plan.
- 5. Soit Y la variable aléatoire $Y = \lambda \cdot \sqrt{X}$.
 - (a) Justifier que Y suit une loi exponentielle dont précisera le paramètre et on donnera une densité.
 - (b) Justifier que pour tout entier $r \in \mathbb{N}^*$, $E(Y^r)$ existe et préciser la valeur de $E(Y^r)$.
 - (c) En déduire que pour tout entier $r \in \mathbb{N}^*$, $E\left(X^r\right)$ existe et préciser la valeur de $E\left(X^r\right)$. Préciser E(X) et vérifier que $V(X) = \frac{20}{\lambda^4}$.
- 6. Soit Z une variable aléatoire suivant une loi exponentielle de paramètre λ . Prouver que la variable aléatoire Z^2 a même loi que X. Retrouver E(X).

Problème : temps d'attente

Les parties 1 et 2 sont indépendantes ; la partie 3 utilise des résultats établis dans les parties 1 et 2. (Ω, \mathcal{A}, P) est un espace probabilisé et toutes les variables aléatoires considérées sont relatives à cet espace.

Partie 1: Temps d'attente pour deux guichets

p est un réel fixé où $p \in]0,1[$ et on note q=1-p.

Une gare dispose de deux guichets .Trois clients notés C_1 , C_2 , C_3 arrivent en même temps. Les clients C_1 et C_2 se font servir tandis que le client C_3 attend puis effectue son opération dès que l'un des deux guichets se libère.

On définit X_1 , X_2 , X_3 les variables aléatoires égales à la durée de l'opération des clients C_1 , C_2 , C_3 respectivement. Ces durées sont en minutes et arrondies à l'unité supérieure ou égale.

On suppose que les variables aléatoires X_1 , X_2 , X_3 sont mutuellement indépendantes et suivent la même loi géométrique de paramètre $p \in]0,1[$.

On note T la variable aléatoire où $T = max(X_1, X_2)$, Z la variable aléatoire $Z = min(X_1, X_2)$ et Δ la variable aléatoire $\Delta = |X_1 - X_2|$.

- 1. (a) Justifier pour tout $k \in \mathbb{N}^*$, $P(X_1 > k) = q^k$.
 - (b) Calculer P(Z > k) pour tout $k \in \mathbb{N}^*$.
 - (c) Justifier que $P(Z=1)=1-q^2$.

- (d) Reconnaître la loi de Z. Préciser E(Z), V(Z).
- 2. (a) Exprimer $X_1 + X_2$ et Δ en fonction de Z et T.
 - (b) Déterminer alors E(T) en fonction de p.
 - (c) Les variables aléatoires Z et T sont-elles indépendantes ?
- 3. (a) Préciser l'ensemble $\Delta(\Omega)$ des valeurs prises par $\Delta = |X_1 X_2|$.
 - (b) Déterminer $P(\Delta = 0)$ en fonction de p.
 - (c) Soit $n \in \mathbb{N}^*$. Déterminer $P(X_1 X_2 = n)$ en fonction de p. En déduire que

$$P(\Delta = n) = \frac{2p \cdot q^n}{2 - p}$$

- (d) Justifier que la variable aléatoire Δ admet une espérance $E(\Delta)$ et la calculer.
- 4. Que représente l'événement $A = [X_3 > \Delta]$? Déterminer P(A) en fonction de p.
- 5. <u>Simulation en Python</u> On suppose que l'on a déjà importé numpy as np et numpy.random as rd

Ecrire un programme qui demande $p \in]0,1[$ à l'utilisateur, qui simule la variable Δ et affiche sa valeur et qui indique si l'événement A est réalisé ou non.

Partie 2 : Fonction génératrice associée à une VARD

Pour toute v.a.r. Y discrète définie sur Ω , à valeurs dans \mathbb{N} , on note

$$\forall t \in \mathbb{R}, \ G_Y(t) = \sum_{k=0}^{+\infty} P(Y=k).t^k$$

6. Soit $t \in [-1, 1]$.

Justifier que la série de terme général $P(Y = k).t^k$ où $k \in \mathbb{N}$ converge absolument. En déduire l'existence de l'espérance de la variable t^Y .

Exprimer $E(t^Y)$ à l'aide de G_Y .

- 7. Que vaut $G_Y(1)$? Justifier que pour tout $t \in [0,1], 0 \le G_Y(t) \le 1$.
- 8. Deux cas particuliers
 - (a) Soit N une variable suivant la loi de Poisson de paramètre $\lambda > 0$. Justifier que G_N est une fonction définie sur \mathbb{R} et exprimer, pour tout $t \in \mathbb{R}$, $G_N(t)$ en fonction de t et λ .

Vérifier que G_N est dérivable sur \mathbb{R} et vérifier que $E(N) = G'_N(1)$.

- (b) Soit X une variable suivant la loi géométrique de paramètre $p \in]0, 1[$. Déterminer l'ensemble de définition \mathcal{D}_X de G_X et exprimer, pour $t \in \mathcal{D}_X$, $G_X(t)$ en fonction de t et p. Justifier que G_X est dérivable sur \mathcal{D}_X et montrer que F(X) = G' (1)
- Justifier que G_X est dérivable sur \mathcal{D}_X et montrer que $E(X) = G'_X(1)$.
- 9. Soit une suite $(U_k)_{k\in\mathbb{N}^*}$ de variables aléatoires mutuellement indépendantes, admettant toutes une espérance.

On admet que dans ce cas, pour tout $n \in \mathbb{N}^*$, $E(U_1.U_2 \cdots U_n)$ existe et que

$$E(U_1,\cdots,U_n)=E(U_1)\cdots E(U_n)$$

On considère une suite $(Y_k)_{k\in\mathbb{N}^*}$ de variables mutuellement indépendantes, de même loi que Y. On note, pour tout $n\in\mathbb{N}^*$, $S_n=\sum_{k=1}^n Y_k$.

Soit $t \in [-1,1]$. Justifier que pour tout $n \in \mathbb{N}^*$, $G_{S_n}(t) = (G_Y(t))^n$.

Dans la suite du problème, on admet le résultat suivant :

si G_Y est dérivable en 1, alors Y admet une espérance et $E(Y) = G_Y'(1)$

Partie 3 : étude d'un seul guichet

On considère un seul guichet qui reçoit et traite successivement d'éventuels clients.

On considère une suite $(X_k)_{k\in\mathbb{N}^*}$ de variables mutuellement indépendantes, où X_k est la durée de traitement en minutes du k-ième client.

Les variables X_k suivent une même loi géométrique de paramètre $p \in]0,1[$.

On considère aussi la variable N égale au nombre de clients traités par le guichet dans une journée donnée.

Une étude a prouvé que N suit une loi de Poisson de paramètre $\lambda > 0$.

Par ailleurs les variables X_k où $k \in \mathbb{N}^*$ et N sont mutuellement indépendantes.

On note X_0 la variable certaine nulle.

On considère la variable définie par $S = \sum_{k=0}^{N} X_k$, c'est-à-dire que

$$\forall \omega \in \Omega, \quad S(\omega) = \sum_{k=0}^{N(\omega)} X_k(\omega)$$

S est égale à la durée totale de traitement des clients dans la journée considérée. On note également pour tout $n \in \mathbb{N}^*$, $S_n = \sum_{k=0}^n X_k$.

- (a) Soit $n \in \mathbb{N}^*$. Justifier que pour tout $i \in \mathbb{N}$, $P_{[N=n]}(S=i) = P(S_n=i)$. En déduire l'existence et la valeur de l'espérance conditionnelle $E(S \mid [N=n])$.
- (b) Justifier que E(S|[N=0])=0.
- (c) A l'aide du théorème de l'espérance totale, montrer que S admet une espérance et déterminer E(S) en fonction de λ et de p.
- 10. (a) Soit $n \in \mathbb{N}^*$ et $t \in [-1, 1]$. A l'aide du théorème de transfert et de certains résultats de la partie 2, justifier que l'espérance conditionnelle $E(t^S|[N=n])$ existe et l'exprimer en fonction de $G_{S_n}(t)$ puis de $G_{X_1}(t)$. On admet que $E(t^S|[N=0]) = 1$.
 - (b) En utilisant le théorème de l'espérance totale, montrer que :

$$\forall t \in [0,1], \ G_S(t) = G_N(G_{X_1}(t))$$

(c) En utilisant certains des résultats de la partie 2, justifier alors que S admet une espérance et retrouver E(S).