Chapitre 14 - Fonctions de n variables I

Objectif du cours : faire de l'optimisation, c'est-à-dire déterminer les extrema d'une fonction de n variables, pour ensuite maximiser ou minimiser une certaine quantité.

Dans tout ce chapitre, n désigne un entier naturel supérieur ou égal à 1 et l'espace \mathbb{R}^n est muni du produit scalaire euclidien canonique, noté $\langle \dots \rangle$ et de la norme euclidienne associée :

$$\forall x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n, \quad \forall y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n, \quad \langle x, y \rangle = \sum_{k=1}^n x_k y_k \quad \text{et} \quad \|x\| = \sqrt{\sum_{k=1}^n x_k^2}$$

On considérera les éléments de \mathbb{R}^n tantôt comme des points, tantôt comme des vecteurs.

I. Ouvert de \mathbb{R}^n , boule ouverte

Définition I.1

Notion de distance

Soit $a = (a_1, \dots, a_n) \in \mathbb{R}^n$ et $b = (b_1, \dots, b_n) \in \mathbb{R}^n$. On note :

$$d(a,b) = ||b - a|| = \sqrt{\sum_{k=1}^{n} (b_k - a_k)^2}$$

la **distance** entre a et b.

Remarque

Inégalité triangulaire : $\forall (a,b,c) \in (\mathbb{R}^n)^3, d(a,b) \leq d(a,c) + d(c,b).$

Définition I.2

Boule ouverte

Soit $a=(a_1,\cdots,a_n)\in\mathbb{R}^n$ et r>0. On note

$$B(a,r) = \{x \in \mathbb{R}^n; \ d(x,a) < r\} = \{x \in \mathbb{R}^n; \ \|x - a\| < r\}$$

la boule ouvert de centre a et de rayon r.

Remarque

En dimension n=2, on parle du disque ouvert de centre a et de rayon r.

Définition I.3

Ouvert de \mathbb{R}^n

Soit Ω un sous-ensemble non vide de \mathbb{R}^n .

On dit que Ω est un ouvert de \mathbb{R}^n si : $\forall a \in \Omega, \exists r > 0; B(a,r) \subset \Omega$

Par convention, on dit que \emptyset est un ouvert de \mathbb{R}^n .

Exemple

Ouverts de référence :

- \mathbb{R}^n est un ouvert de \mathbb{R}^n
- Toute boule ouverte est un ouvert de \mathbb{R}^n .
- Toute réunion d'ouverts de \mathbb{R}^n est un ouvert de \mathbb{R}^n .
- Toute intersection finie d'ouverts de \mathbb{R}^n est un ouvert de \mathbb{R}^n .
- Théorème (voir plus loin) : soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue sur \mathbb{R}^n et $a \in \mathbb{R}^n$.
 - 1. $\{(x_1,\cdots,x_n)\in\mathbb{R}^n;\ f(x_1,\cdots,x_n)>a\}=f^{-1}([a;+\infty[))$ est un ouvert de \mathbb{R}^n
 - 2. $\{(x_1, \dots, x_n) \in \mathbb{R}^n; f(x_1, \dots, x_n) < a\} = f^{-1}(]a; +\infty[)$ est un ouvert de \mathbb{R}^n

La notion de continuité pour une fonction de n variables sera vue plus loin !!

Un ensemble ouvert est un ensemble qui ne contient aucun point de sa "frontière"

II. Fonctions définies sur \mathbb{R}^n

II.1) Exemples de fonctions à plusieurs variables

Définition II.1

Fonctions affines

Soit f une application définie sur \mathbb{R}^n à valeurs dans \mathbb{R} .

On dit que f est affine s'il existe une (n+1)-liste (a_1, \dots, a_n, b) de réels tels que

$$\forall (x_1, \dots, x_n) \in \mathbb{R}^n, \quad f(x_1, \dots, x_n) = \left(\sum_{i=1}^n a_i x_i\right) + b$$

Si n=2, f est une fonction affine s'il existe des réels (a_1,a_2,b) tels que

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) = a_1x + a_2y + b$$

Il est possible de définir une fonction à deux variables dans Python :

Définition II.2

Les fonctions polynômes

Soit f une application définie sur \mathbb{R}^n à valeurs dans \mathbb{R} .

On dit que la fonction f est **polynomiale** s'il existe un entier p non nul, une p-liste $(\alpha_1, \dots, \alpha_p)$ de réels et pour tout i de [[1, p]], une n-liste $(\beta_{1,i}, \dots, \beta_{n,i})$ d'entiers tels que

$$\forall (x_1, \cdots, x_n) \in \mathbb{R}^n, \quad f(x_1, \cdots, x_n) = \sum_{i=1}^p \alpha_i x_1^{\beta_{1,i}} \cdots x_n^{\beta_{n,i}}$$

Exemple

1.
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 est une fonction polynomiale. $(x,y) \longmapsto x^2 - 2xy + y^2$

2.
$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 est une fonction polynomiale. $(x,y) \longmapsto x^6 - 3x^2y^3 + x - 3y + 5$

3.
$$h: \begin{picture}(20,0)\put(0,0){\line(1,0){10}}\put(0,0){\line(1,$$

Exemples de fonctions non polynômiales définies sur \mathbb{R}^n :

II.2) Graphe d'une fonction de plusieurs variables

Définition II.3

Soit f une fonction définie sur \mathbb{R}^n et à valeurs dans \mathbb{R} .

On appelle graphe de f l'ensemble Γ_f de points (x_1, \dots, x_n, y) de \mathbb{R}^{n+1} tels que $y = f(x_1, \dots, x_n)$.

$$\Gamma_f = \{(x_1, \dots, x_n, y) \in \mathbb{R}^{n+1}, \ y = f(x_1, \dots, x_n)\}$$

On appelle **équation du graphe de** f l'équation $y = f(x_1, \dots, x_n)$.

Si n=2, le graphe de f est une **surface** (aussi appelée **nappe**). Dans ce cas on écrit plutôt le graphe de f sous la forme:

$$\Gamma_f = \{(x, y, z) \in \mathbb{R}^3, z = f(x, y)\}$$

II.3) Tracé Python d'une surface

```
On commence par l'importation suivante :
```

```
import numpy as np
import matplotlib.pyplot as plt
ax = plt.axes(projection = '3d')
```

Si x et y sont des matrices lignes de taille n et m, l'instruction

X,Y=np.meshgrid(x,y)

permet de construire le maillage $((x_i,y_j))_{(i,j)\in[[1,n]]\times[[1,m]]}$. On effectue alors le tracé via :

ax.plot_surface(X,Y,f(X,Y))
plt.show()

Exemple

x=np.arange(-4,4,0.1)

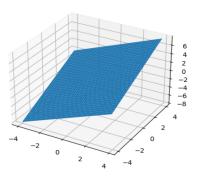
y=np.arange(-4,4,0.1)

X,Y=np.meshgrid(x,y)

ax.plot_surface(X,Y,f(X,Y))

ax.piot_surface(x,1,1(x,1)

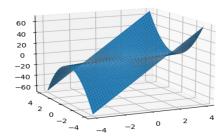
plt.show()



Exemple

Graphe de $f(x,y) = x + xy^2$

def f(x,y):
 return x+x*y**2
x=np.linspace(-4,4,100)
y=np.linspace(-4,4,100)
X,Y=np.meshgrid(x,y)
ax.plot_surface(X,Y,f(X,Y))
plt.show()



II.4) Ligne de niveau d'une fonction de deux variables

Définition II.4

Soient f une fonction de \mathbb{R}^2 dans \mathbb{R} et λ un réel.

On appelle ligne de niveau λ de f l'ensemble des points (x,y) de \mathbb{R}^2 tels que

$$f(x, y) = \lambda$$

Autrement dit, la ligne de niveau L_{λ} est

$$L_{\lambda} = \{(x, y) \in \mathbb{R}^2 / f(x, y) = \lambda\}$$

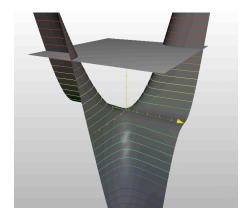
N. Marconnet - Lycée Saint Just 3 Année 2024-2025

N. Marconnet - Lycée Saint Just

Année 2024-2025

Remarque

La ligne de niveau λ est l'intersection du graphe Γ de f (surface) et du plan d'équation $z = \lambda$.



II.5) Représentation d'une ligne de niveau en Python

Soit X, Y un maillage du domaine $[a,b] \times [c,d]$ et f une fonction de deux variables. La commande

 ${\tt plt.contour(X,Y,f(X,Y),N)} \quad {\tt ou } \quad {\tt plt.contour(X,Y,f(X,Y),T)}$

trace les lignes de niveau de la fonction f, avec au choix :

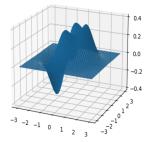
- un entier N : dans ce cas on obtient N − 1 lignes de niveau entre les valeurs minimales et maximales de f sur le maillage;
- une liste T: dans ce cas on obtient les lignes de niveau associées aux valeurs contenues dans T.

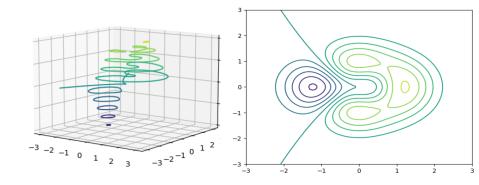
Exemple

On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto (x^3+y^2).e^{-(x^2+y^2)}$.

Tracer le graphe de f ainsi que 10 lignes de niveau, sur le domaine $[-3,3] \times [-3,3]$.

Pour représenter les lignes de niveau dans le plan, on doit supprimer la commande ax = plt.axes(projection = '3d') (on peut la mettre en commentaire). On peut les voir dans l'espace en laissant la commande.





III. Extrema locaux des fonctions à plusieurs variables

La recherche d'extrema pour de telles fonctions (issues par exemple de l'économie) est un des objectifs du programme.

Définition III.1

Soit Ω un sous-ensemble non vide de \mathbb{R}^n , a un point de Ω et $f:\Omega\to\mathbb{R}$.

1. On dit que f admet un maximum global (ou absolu) en a sur Ω si : $\forall x \in \Omega$, $f(a) \ge f(x)$.

Le maximum de f sur Ω est alors M = f(a) et on note $M = Max_{\Omega}(f)$. On dit que ce maximum est **strict** si $\forall x \in \Omega \setminus \{a\}, f(a) > f(x)$.

2. On dit que f admet un minimum global (ou absolu) en a sur Ω si $\forall x \in \Omega$, $f(a) \leq f(x)$.

Le minimum de f sur Ω est alors m = f(a) et on note $m = min_{\Omega}(f)$. On dit que ce minimum est **strict** si $\forall x \in \Omega \setminus \{a\}, f(a) < f(x)$.

3. On dit que f admet un maximum local en a sur Ω si :

$$\exists r > 0; \ \forall x \in B(a,r) \cap \Omega, \ f(a) \geqslant f(x)$$

4. On dit que f admet un minimum local en a sur Ω si :

$$\exists r > 0; \ \forall x \in B(a,r) \cap \Omega, \ f(a) \leqslant f(x)$$

Dans tous les cas, on dit que f admet un **extremum** (global ou local) en a.

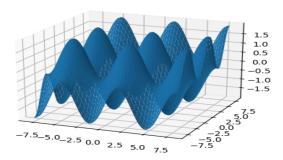
Remarque

- \bullet Extremum global \Rightarrow extremum local. Réciproque fausse !!
- f a un unique maximum global; f peut avoir plusieurs maximums locaux.
- Un maximum global peut être atteint en plusieurs points, ou en un seul point (maximum strict).

N. Marconnet - Lycée Saint Just 5 Année 2024-2025 N. Marconnet - Lycée Saint Just 6 Année 2024-2025

Exemple

On considère la fonction $f(x,y) = \sin(x) + \sin(y)$. On trace son graphique en Python:



Que peut-on conjecturer quand à ses extrema?

Remarque

importante en pratique

Pour étudier sans utiliser plus de théorie un extremum en a, on peut étudier le signe de f(x) - f(a). On travaille soit de faon globale (pour tout $x \in \Omega$), soit de faon locale (pour x au voisinage de a). On pose parfois x = a + h où h est tel que $a + h \in \Omega$.

Exercice 1

- 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}$, où $f(x,y) = \frac{1}{x^2 + y^2 + 1}$. Etudier les extrema globaux de f.
- 2. Soit $g: \mathbb{R}^2 \to \mathbb{R}$, où $g(x,y) = e^x.y$. Etudier les extrema globaux. Montrer qu'en O=(0,0), g n'admet pas d'extremum local.

IV. Continuité d'une fonction $f: \mathbb{R}^n \to \mathbb{R}$

IV.1) Définition

Définition IV.1

Soit Ω un sous-ensemble non vide de \mathbb{R}^n , $f:\Omega\to\mathbb{R}$ une fonction et $a\in\Omega$.

1. f est continue en a si :

$$\forall \epsilon > 0, \exists r > 0; (x \in \Omega \text{ et } ||x - a|| \le r) \Rightarrow |f(x) - f(a)| \le \epsilon$$

2. f est continue sur Ω si f est continue en tout point $a \in \Omega$

Remarque

On pourrait aussi définir la notion de limite en a (mais hors-programme)

On ne reviendra pas souvent à cette définition. Le programme exclut toute étude délicate de continuité.

IV.2) Continuité des fonctions usuelles

Théorème IV.1

Les fonctions affines sont continues sur \mathbb{R}^n .

Les fonctions polynomiales sont continues sur \mathbb{R}^n .

Théorème IV.2

Théorèmes généraux (admis)

Soit $\Omega \subset \mathbb{R}^n$, $f:\Omega \to \mathbb{R}$, $g:\Omega \to \mathbb{R}$, $a\in\Omega$ et $\lambda \in \mathbb{R}$.

- 1. (a) Si f et g sont continues en a, alors f + g, $f \times g$, λf sont continues en a.
 - (b) Si f et g sont continues sur Ω , alors f+g, $f\times g$, $\lambda.f$ sont continues sur Ω .
- 2. (a) Si f et g sont continues en a et $g(a) \neq 0$ alors $\frac{f}{a}$ est continue en a.
 - (b) Si f et g sont continues sur Ω et g ne s'annule pas sur Ω alors $\frac{f}{g}$ est continue sur Ω .

Théorème IV.3

Composition version 1

Soit $\Omega \subset \mathbb{R}^n$ et $f: \Omega \to \mathbb{R}$, à valeurs dans un intervalle I. Soit $g: I \to \mathbb{R}$. Soit $a \in \Omega$.

- 1. Si f est continue en $a \in \Omega$ et g continue en f(a), alors $g \circ f$ est continue en a.
- 2. Si f est continue sur Ω et q est continue sur I, alors $q \circ f$ est continue sur Ω .

Se prouve via la définition, analogue aux fonctions d'une variable (admis).

Théorème IV.4

Composition version 2

Soit $\Omega \subset \mathbb{R}^n$ et $f: \Omega \to \mathbb{R}$, soit $a = (a_1, \dots, a_n) \in \Omega$.

Soit $u_1: I \to \mathbb{R}, ..., u_n: I \to \mathbb{R}$ n fonctions d'une variable, définies sur un intervalle I de \mathbb{R} . Soit $b \in \mathbb{R}$.

Si f est continue en $a=(a_1,\cdots,a_n)$ et si pour tout $k\in[[1,n]]$, $\lim_{t\to b}u_k(t)=a_k$, alors

$$\lim_{t \to a} f(u_1(t), \cdots, u_n(t)) = f(a) \quad (*)$$

Remarque

Ce théorème peut être utile pour montrer qu'une fonction f de n variables **n'est pas** continue en un point. Mais ce n'est pas dans l'esprit du programme....

Si nécessaire, on considère des fonctions de la forme $u_k: t \mapsto \lambda.t$ pour obtenir une contradiction sur (*).

Théorème IV.5

(Important dans la pratique)

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue sur \mathbb{R}^n et $a \in \mathbb{R}$.

- 1. $\{(x_1, \dots, x_n) \in \mathbb{R}^n; f(x_1, \dots, x_n) > a\}$ est un ouvert de \mathbb{R}^n
- 2. $\{(x_1, \dots, x_n) \in \mathbb{R}^n; f(x_1, \dots, x_n) < a\}$ est un ouvert de \mathbb{R}^n

Exemple

- Soit $f: \mathbb{R}^3 \to \mathbb{R}$, où $f(x, y, z) = 3x^2y 4xyz + z^4$. f est polynômiale donc continue sur \mathbb{R}^3 .
- Soit $N: \mathbb{R}^n \to \mathbb{R}$, où

$$N(x_1, \dots, x_n) = ||(x_1, \dots, x_n)|| = \sqrt{x_1^2 + \dots + x_n^2}$$

N est continue sur \mathbb{R}^n car ...

- Soit $f: \mathbb{R}^2 \to \mathbb{R}$ où $f(x,y) = \ln(x+y) + \cos(x^2 \cdot y)$.
 - 1. Déterminer l'ensemble de définition Ω de f et justifier que Ω est un ouvert.
 - 2. Prouver que f est continue sur Ω .

V. Dérivées partielles d'ordre 1, fonction de classe C^1

V.1) Dérivée partielle d'ordre 1 par rapport à la ième variable

Définition V.1

Fonction partielle et dérivée partielle

Soit Ω un **ouvert** non vide de \mathbb{R}^n et $f:\Omega\to\mathbb{R}$.

Soit $a = (a_1, \dots, a_n) \in \Omega$.

1. Soit $i \in [[1,n]]$. On appelle i-ième fonction partielle de f au point a la fonction $f_{a,i}$ de $\mathbb R$ dans $\mathbb R$ définie au voisinage de a_k par

$$f_{a,i}(x) = f(a_1, \dots, a_{i-1}, x, a_{i+1}, \dots, a_n)$$

2. Soit $i \in [[1,n]]$. On dit que f admet une dérivée partielle en a par rapport à la i-ème variable x_i si la i-ème fonction partielle en $a: f_{a,i}: x \mapsto f(a_1, \cdots a_{i-1}, x, a_{i+1}, \cdots, a_n)$ est dérivable en a_i . Dans ce cas, on note $\left[\overline{\partial_i f(a)} = f'_{a,i}(a_i) \right]$

Remarque

Autres notations (utilisées dans les programmes précédents) : $\partial_i f(a) = \frac{df}{dx_i}(a) = \frac{\partial f}{\partial x_i}(a)$.

Remarque

On est donc ramené à étudier la dérivabilité en un point d'une fonction d'une variable **en fixant les autres variables**, en général avec les théorèmes généraux, ou (très) exceptionnellement en étudiant un

taux d'accroissement :

$$\begin{array}{ll} f_{a,i}:x\mapsto f(a_1,\cdots a_{i-1},x,a_{i+1},\cdots,a_n) \text{ est dérivable en } a_i\\ \Leftrightarrow & \lim_{h\to 0}\frac{f(a_1,\cdots,a_{i-1},a_i+h,a_{i+1},\cdots,a_n)-f(a_1,\cdots,a_n)}{h}=L\in\mathbb{R} \end{array}$$

Exemple

Soit f la fonction définie sur \mathbb{R}^2 par $\forall (x,y) \in \mathbb{R}^2$ $f(x,y) = x^2 + y^2 + 2xy - 5x + 6$. Déterminer les dérivées partielles en (x,y), puis donner ses dérivées partielles en a=(0,1).

Définition V.2

Dérivées partielles d'ordre 1 sur un ouvert

Soit Ω un **ouvert** non vide de \mathbb{R}^n et $f:\Omega\to\mathbb{R}$.

Soit $i \in [[1,n]]$. Si f admet en tout point de Ω une dérivée partielle par rapport à la i-ième variable, alors l'application :

$$\partial_i f: \Omega \to \mathbb{R}, \quad (x_1, \dots, x_n) \mapsto \partial_i f(x_1, \dots, x_n)$$

est la (fonction) dérivée partielle d'ordre 1 par rapport à la i-ème variable x_i .

Exercice 2

- Soit f: R⁴ → R, définie par f(x, y, z, t) = xy + x²z + y³ x⁴.
 Déterminer les dérivées partielles de f.
- 2. Soit g la fonction définie sur \mathbb{R}^3 par $g(x,y,z)=\frac{x^3}{1+x^2+v^2+z^2}$

Déterminer les dérivées partielles de f.

Théorème V.1

Théorèmes généraux

Les règles usuelles de dérivation s'appliquent.

1. Soit Ω un ouvert de \mathbb{R}^n , f et g deux fonctions de Ω dans \mathbb{R} , $a \in \Omega$, $\lambda \in \mathbb{R}$, $i \in [[1, n]]$. Si f et g admettent une dérivée partielle en a par rapport à la i-ième variable, alors il en est de même pour f+g, f.g, $\lambda.f$ et $\frac{f}{g}$ (si $g(a) \neq 0$) et

$$\boxed{ \begin{aligned} \partial_i(f+g)(a) &= \partial_i(f)(a) + \partial_i(g)(a); & \partial_i(f.g)(a) &= \partial_i(f)(a).g(a) + f(a).\partial_i(g)(a) \\ \\ \partial_i(\lambda f)(a) &= \lambda \partial_i(f)(a); & \partial_i(\frac{f}{g})(a) &= \frac{\partial_i(f)(a).g(a) - f(a).\partial_i(g)(a)}{(g(a))^2} \end{aligned}}$$

- 2. Soit Ω un ouvert de \mathbb{R}^n , $f:\Omega\to\mathbb{R}$, $a\in\Omega$ et $G:\mathbb{R}\to\mathbb{R}$, définie sur un intervalle I contenant $f(\Omega)$.
- Si f admet une dérivée partielle en a par rapport à la i-ème variable x_i et si G est dérivable en f(a), alors $G \circ f$ admet une dérivée partielle en a par rapport à la i-ème variable x_i et

$$\partial_k(G \circ f)(a) = G'(f(a)).\partial_i(f)(a)$$

V.2Gradient

Définition V.3

Gradient d'une fonction

Soit Ω un ouvert de \mathbb{R}^n , f une fonction définie de Ω dans \mathbb{R} et $a \in \Omega$.

Lorsque, pour tout tout entier i de [[1,n]], la fonction f admet une dérivée partielle d'ordre 1 selon la $i^{\text{ème}}$ variable en a, on appelle **gradient de** f en a, le vecteur de \mathbb{R}^n noté $\nabla f(a)$ tel que

$$\nabla f(a) = \left(\partial_1(f)(a) , \partial_2(f)(a) , \cdots , \partial_n(f)(a)\right)$$

• Soit f une fonction de \mathbb{R}^2 définie par : $\forall (x,y) \in \mathbb{R}^2$, $f(x,y) = x^4 + 4x^3y + 5x^2y^2 + 4xy^3 + y^4$ et

Déterminer le gradient de f en (x, y) quelconque, puis en a.

• Soit f une fonction de \mathbb{R}^3 définie par : $\forall (x,y,z), f(x,y,z) = xe^z + ye^x + ze^y$ et a = (1,1,1). Déterminer le gradient de f en (x, y, z) quelconque, puis en a.

Proposition V.1

Hors-programme, traduction des relations sur les dérivées partielles Sous réserve d'existence.

$$\begin{split} \nabla(f+g)(a) &= \nabla(f)(a) + \nabla(g)(a), \qquad \nabla(\alpha f)(a) = \alpha \nabla(f)(a) \\ \nabla(f\times g)(a) &= g(a)\nabla(f)(a) + f(a)\nabla(g)(a), \qquad \nabla\left(\frac{f}{g}\right)(a) = \frac{1}{(g(a))^2}\left(g(a)\nabla(f)(a) - f(a)\nabla(g)(a)\right) \end{split}$$

Proposition V.2 (Admis)

Les vecteurs gradients sont orthogonaux aux lignes de niveaux (au programme cf sujet Ecricome)

Fonctions de classe \mathscr{C}^1 sur \mathbb{R}^n

Définition V.4

Soit Ω un ouvert de \mathbb{R}^n . Soit f une fonction définie sur Ω à valeurs dans \mathbb{R} .

On dit que f est de classe C^1 sur Ω lorsque

- f admet des dérivées partielles en tout point de Ω
- $\forall i \in [[1, n]], \partial_i(f)$ est continue sur Ω .

Théorème V.2

Théorèmes généraux

Soit Ω un ouvert de \mathbb{R}^n . Soit f et g des fonctions définies sur Ω à valeurs dans \mathbb{R} , soit $\lambda \in \mathbb{R}$.

- Si f et g sont de classe \mathcal{C}^1 sur Ω , alors f+g, f.g, $\lambda.f$ sont de classe \mathcal{C}^1 sur Ω .
- Si de plus g ne s'annule pas sur Ω alors $\frac{f}{g}$ est de classe \mathcal{C}^1 sur Ω .

Théorème V.3

Composition

Soit Ω un ouvert de \mathbb{R}^n , $f:\Omega\to\mathbb{R}$, à valeurs dans I intervalle de \mathbb{R} . Soit $G:I\to\mathbb{R}$. Si f est de classe \mathcal{C}^1 sur Ω et si G est de classe \mathcal{C}^1 sur I, alors $G \circ f$ est de classe \mathcal{C}^1 sur Ω et

$$\forall a \in \Omega, \ \forall i \in [[1, n]], \ \partial_i(G \circ f)(a) = G'(f(a)) \cdot \partial_i(f)(a)$$

Théorème V.4

Les fonctions de références

- Les fonctions affines sont de classe C¹ sur Rⁿ.
- Les fonctions polynomiales sont de classe C^1 sur \mathbb{R}^n

Exemple Soit f définie sur \mathbb{R}^2 par $f(x,y)=\frac{xy^3}{1+x^2+y^2}$ Montrer que f est une fonction de classe \mathscr{C}^1 sur \mathbb{R}^2 et calculer ses fonctions dérivées partielles.

Développement limité d'ordre 1

VI.1) DL d'ordre 1

Théorème VI.1

Théorème et définition (Admis)

Soit Ω un ouvert non vide de \mathbb{R}^n , $f:\Omega\to\mathbb{R}$ de classe \mathcal{C}^1 sur Ω .

Soit $x = (x_1, \dots, x_n) \in \Omega$.

1. Il existe une fonction $\epsilon: \mathbb{R}^n \to \mathbb{R}$ définie au voisinage de (0,...,0), continue en (0,...,0) où $\epsilon(0,...,0) = 0$, telle que pour h voisin de (0,...,0),

$$f(x+h) = f(x) + \langle \nabla f(x), h \rangle + ||h|| \cdot \epsilon(h)$$

c'est à dire pour $h = (h_1, \dots, h_n)$,

$$f(x_1 + h_1, \dots, x_n + h_n) = f(x_1, \dots, x_n) + \sum_{i=1}^n \partial_i(f)x \cdot h_i + \sqrt{h_1^2 + \dots + h_n^2} \cdot \epsilon(h_1, \dots, h_n)$$

12

2. On dit que f admet en $x=(x_1,\cdots,x_n)$ un développement limité d'ordre 1. Celui ci est unique.

Remarque

Si f est une fonction de $\mathbb R$ dans $\mathbb R$ de classe $\mathcal C^1$, d'après la formule de Taylor-Young elle admet en tout $x \in \mathbb R$ le DL d'ordre $1: f(x+h) = f(x) + f'(x).h + h.\epsilon(h)$.

Remarque

Conséquence de ce théorème : si f est de classe \mathcal{C}^1 sur un ouvert Ω , alors f est aussi continue sur Ω .

VI.2) Dérivée de g(t) = f(x + th)

Théorème VI.2

Soit f une fonction de classe \mathcal{C}^1 sur un ouvert Ω de \mathbb{R}^n , soit $x \in \Omega$, $h \in \mathbb{R}^n$ et g définie pour tout $t \in \mathbb{R}$ tel que $x + th \in \Omega$ par :

$$q(t) = f(x + th)$$

Alors g est dérivable en tout t de son domaine de définition et

$$g'(t) = \langle \nabla f(x+th), h \rangle$$

En particulier $g'(0) = \langle \nabla f(x), h \rangle$.

Exercice 3

Soit $f: \mathbb{R}^2 \to \mathbb{R}$, où $f(x,y) = x \cdot \cos(y) + y \cdot e^x$. Soit O = (0,0), $h = (h_1, h_2) \in \mathbb{R}^2$ et pour tout $t \in \mathbb{R}$, q(t) = f(0+t.h). Calculer q'(t).

VII. Condition nécessaire d'existence d'un extremum local

Théorème VII.1

Condition nécessaire du premier ordre d'existence d'un extremum local

Soit Ω un ouvert non vide de \mathbb{R}^n , $f:\Omega\to\mathbb{R}$ de classe \mathcal{C}^1 sur Ω . Soit $a=(a_1,\cdots,a_n)\in\Omega$.

- 1. Si
 - f est de classe C^1 sur l'ouvert Ω
 - a ∈ Ω
 - f admet en a un extremum local

alors $\nabla f(a) = 0$, c'est-à-dire que pour tout $i \in [[1, n]], \partial_i(f)(a) = 0$.

- 2. On dit que a est un point critique de f ssi $\nabla f(a) = (\partial_1(f)(a), \dots, \partial_n(f)(a)) = (0, \dots, 0)$.
- 3. Si a est un point critique et f n'admet pas d'extremum en a, on dit que a est un **point col** (comme un col de montagne!), ou **point selle** (comme une selle de cheval!) de f.

Remarque

- 1. Parallèle avec le cas des fonctions d'une variable : si $f:I\to\mathbb{R}$ dérivable sur l'intervalle I ouvert admet un extremum local en a alors f'(a)=0. La réciproque est fausse : contre-exemple classique de la fonction cube $f:x\mapsto x^3$ telle que f'(0)=0 mais f n'admet pas d'extremum local en 0.
- 2. La preuve est simple : pour tout $i \in [[1,n]]$, la fonction $f_{a,i}: x \mapsto f(a_1, \cdots, a_{i-1}, x, a_{i+1}, \cdots, a_n)$ dérivable en a_i admet un extremum local en a_i (où a_i n'est pas une borne de $\mathcal{D}f_{a,i}$) donc $\partial_i(f)(a) = f'_{a,i}(a_i) = 0$.

3. La réciproque est fausse : en un point critique, f n'admet pas forcément d'extremum. L'étude du signe de f(a+h)-f(a) globale ou locale permet de le confirmer ou non

VIII. Exercices

Quelques techniques, à adapter à chaque exercice

Pour étudier les extrema de f, on commence souvent par la recherche d'éventuels points critiques.

- Si f n'admet aucun point critique sur l'ouvert Ω , alors f n'a aucun extremum (local ou global) sur Ω .
- Si a est un point critique de f:
 - étude du signe de f(a+h)-f(a) où h tel que $a+h\in\Omega$ (cas global) ou h voisin de (0,...,0) (cas local);
 - variante : étude du signe de f(b) f(a) où $b \in \Omega$ (cas global) ou b voisin de a (cas local);
 - si f(a+h)-f(a) change de signe dans toute boule de centre $a,\ f$ n'admet pas d'extremum local en a:a est un point col.
 - -en laissant un degré de liberté montrer que f tend vers $+\infty$ ou $-\infty$ pour justifier que f n'admet pas d'extremum global en a : cf exercices...

Des techniques plus performantes via les dérivées partielles d'ordre 2 seront mises en place dans le chapitre suivant.

Exercice 4

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ telle que

$$f(x,y) = x \cdot y^2 + exp(xy)$$

- 1. Justifier que f est de classe \mathcal{C}^1 sur \mathbb{R}^2 et calculer ses dérivées partielles.
- 2. Préciser le gradient de f en a=(1,1), donner le DL à l'ordre 1 en a.
- 3. Déterminer les points critiques de f sur \mathbb{R}^2 .
- 4. (a) En observant le signe de f(x,x)-1 et de f(x,-x)-1, justifier que f n'admet pas d'extremum local en (0,0).
 - (b) Justifier que f n'admet pas d'extremum local en (0, -1).
- 5. Conclure quand à l'étude des extremums de f.

Exercice 5

Soit $n \geq 2$ et

$$f: \Omega = (\mathbb{R}_+^*)^n \to \mathbb{R}, \quad \text{où } f(x_1, \dots, x_n) = \ln(\prod_{k=1}^n x_k)$$

14

- 1. (a) Justifier que $\Omega = (\mathbb{R}_+^*)^n$ est un ouvert de \mathbb{R}^n .
 - (b) Justifier que f est de classe C^1 sur Ω et déterminer les dérivées partielles de f.
- 2. Préciser le gradient en $a = (1, \dots, 1)$, le DL à l'ordre 1 en a.
- 3. Etudier les extremums de f sur Ω .

Exercice 6

Soit
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 où $f(x,y) = \int_x^{x \cdot y} \exp(t^2) dt$

- 1. Justifier que f est définie sur \mathbb{R}^2
- 2. Justifier que f est de classe C^1 sur \mathbb{R}^2 et calculer ses dérivées partielles. sur \mathbb{R}

Exercice 7

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ où f(x,y) = x.y.

Etudier les extrema de f locaux et globaux.

Exercice 8

Soit
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 où $f(x,y) = x^2 + xy + y^2 + x - y + 3$.

Etudier les extrema de f locaux et globaux.

Exercice 9

Soit
$$n \geq 3$$
 et $f: \mathbb{R}^n \to \mathbb{R}$, où $f(x_1, \dots, x_n) = \sum_{k=1}^{n-1} x_k . x_{k+1}$.

- 1. Justifier que f est de classe \mathcal{C}^1 sur \mathbb{R}^n et déterminer les dérivées partielles de f.
- 2. Dans le cas où n est pair, étudier les extrema de f.
- 3. Si n=3, déterminer les points critiques de f.

Exercice 10

Soit $n \geq 2$ et $f: \mathbb{R}^n \to \mathbb{R}$, où

$$f(x_1, \dots, x_n) = \sum_{k=1}^{n} (1 - x_k)^4 + (\sum_{k=1}^{n} x_k)^4$$

- 1. Justifier que f est de classe \mathcal{C}^1 sur \mathbb{R}^n et calculer ses dérivées partielles.
- 2. Prouver que f admet un unique point critique. Le déterminer.