CB2 sujet Maths I - ESSEC 2011

Je reprends quelques questions dont le corrigé dans le fichier d'annales est erronné.

- 1) Montrons que C(U) est un s.e.v. de L(E).
 - Par hypothèse, $C(U) \subset L(E)$.
 - L'application nulle $0_{\mathcal{L}(E)}$ appartient à C(U) puisque :

$$\forall u \in U, \ 0_{\mathcal{L}(E)} \circ u = 0_{\mathcal{L}(E)} = u \circ 0_{\mathcal{L}(E)}$$

• Soit $(v, w) \in C(U)^2$ et $\lambda \in \mathbb{R}$. Montrons que $\lambda \cdot v + w \in C(U)$. Pour tout $u \in U$,

$$(\lambda \cdot v + w) \circ u = \lambda v \circ u + w \circ u$$

$$= \lambda u \circ v + u \circ w \text{ puisque } v \text{ et } w \text{ commutent avec } u$$

$$= u \circ (\lambda \cdot v + w)$$

donc $\lambda.v + w \in C(U)$.

• Bilan : C(U) est un s.e.v. de L(E)

De plus, de façon évidente $Id_E \in C(U)$ donc $C(U) \neq \{0_{\mathcal{L}(E)}\}$ et $\dim(C(U)) \geq 1$

- 5) a. Montrons que H est un sous-espace vectoriel de l'espace vectoriel $App(]-1,1[,\mathbb{R})$ des applications de]-1,1[dans $\mathbb{R}.$
 - Par définition, $H \subset App(]-1,1[,\mathbb{R}).$
 - La fonction nulle 0_{App(]-1,1[,ℝ)} est associée à la suite nulle : ∀n ∈ N, a_n = 0 qui appartient
 à A de façon évidente. Donc 0_{App(]-1,1[,ℝ)} ∈ H.
 - Soit $(f,g) \in H^2$ et $\lambda \in \mathbb{R}$. Notons $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ deux suites de A telles que pour tout $x \in]-1,1[,\ f(x)=\sum_{n=0}^{+\infty}a_n.x^n$ et $g(x)=\sum_{n=0}^{+\infty}b_n.x^n$. Montrons que $\lambda.f+g\in H$. On remarque que, sous réserve de convergence, $\forall x\in]-1,1[$,

$$\lambda.f(x) + g(x) = \sum_{n=0}^{+\infty} (\lambda.a_n + b_n).x^n$$

Il reste à montrer que la suite $(\lambda.a_n+b_n)_{n\in\mathbb{N}}$ appartient à A, c'est-à-dire que la série ci-dessus est absolument convergente. Pour tout $n\in\mathbb{N}$, par inégalité triangulaire :

$$|(\lambda . a_n + b_n) . x^n| < |\lambda| . |a_n . x^n| + |b_n . x^n|$$

La série de t.g. $|\lambda|.|a_n.x^n| + |b_n.x^n|$ converge en tant que combinaison linéaire de séries convergentes. Par critère de majoration, la série de t.g. $|(\lambda.a_n + b_n).x^n|$ est convergente, ce qui montre que $(\lambda.a_n + b_n)_{n \in \mathbb{N}}$ appartient à A et donc que $\lambda.f + g \in H$.

• Bilan : H est un s.e.v. de $App(]-1,1[,\mathbb{R})$

6) a. Soit $(a_n)_{n\in\mathbb{N}}$ une suite géométrique : il existe $q\in\mathbb{R}$ tel que pour tout $n\in\mathbb{N}$, $a_n=q^n.a_0$. Cette suite appartient à B si et seulement si pour tout $n\in\mathbb{N}$:

$$2a_{n+3} + 3a_{n+2} - a_n = 0$$

$$\Leftrightarrow 2.q^{n+3}.a_0 + 3.q^{n+2}.a_0 - q^n.a_0 = 0$$

$$\Leftrightarrow a_0.q^n.(2q^3 + 3q^2 - 1) = 0$$

On a donc : - $a_0 = 0$, auquel cas la suite est nulle quelle que soit la raison q; - ou alors $q^n = 0$ ($\forall n \in \mathbb{N}$), donc en particulier $q^0 = 0$, ce qui est impossible; - ou alors $2q^3 + 3q^2 - 1 = 0$. Cette équation a pour solution évidente q = -1, et alors $(q+1)(2q^2+q-1) = 0$, d'où (q+1)(q+1)(2q-1) = 0, donc q = -1 ou $q = \frac{1}{2}$.

<u>Bilan</u>: les seules suites géométriques appartenant à B sont les suites de raison q=-1 ou de raison $q=\frac{1}{2}$. (notons que la suite nulle est une de ces suites)

15. Soit $x \in E$. Comme $E = \bigoplus_{i=1}^p E_i$, on peut écrire $x = x_1 + \dots + x_p$ où pour tout $i \in [[1, p]]$, $x_i \in E_i$. D'une part,

$$v \circ u(x) = v(\sum_{i=1}^{p} u(x_i)) = v(\sum_{i=1}^{p} \lambda_i . x_i) = \sum_{i=1}^{p} \lambda_i . v(x_i)$$

et d'autre part,

$$u \circ v(x) = u(\sum_{i=1}^{p} v(x_i))$$

$$= \sum_{i=1}^{p} u(v(x_i))$$

$$= \sum_{i=1}^{p} \lambda_i . v(x_i) \text{ car } E_i \text{ est stable par } v$$

Ainsi pour tout $x \in E$, $v \circ u(x) = u \circ v(x)$, ce qui montre que $v \circ u = u \circ v$, et donc que $v \in C(u)$.

2