ECG2 - Lycée Saint Just Mathématiques 2022/23 Programme de colle - **Semaine 20** du 24 au 28 mars 2025

Chapitre 14 - Fonctions de n variables I

Tous les résultats sont admis

- Notion de boule ouverte, d'ouvert de \mathbb{R}^n . Une réunion (même infinie) d'ouverts est un ouvert; une intersection finie d'ouverts est un ouvert.
- Exemples de fonctions de n variables : fonctions affines, fonctions polynômiales.
- Déclaration d'une fonction de deux ou trois variables dans Python.
- Graphe d'une fonction de n variables. Ligne de niveau λ .
- Extremum local, extremum global : définitions. Exemples simples.
- Continuité d'une fonction de *n* variables. Théorèmes généraux : opérations algébriques (somme, produit, quotient), composition.
- Les fonctions polynômiales sont continues sur \mathbb{R}^n .
- Théorème :

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue sur \mathbb{R}^n et $a \in \mathbb{R}^n$.

- 1. $\{(x_1, \dots, x_n) \in \mathbb{R}^n; f(x_1, \dots, x_n) > a\}$ est un ouvert de \mathbb{R}^n
- 2. $\{(x_1, \dots, x_n) \in \mathbb{R}^n; f(x_1, \dots, x_n) < a\}$ est un ouvert de \mathbb{R}^n

Pour montrer qu'un ensemble est un ouvert nous utilisons ce théorème + stabilité par réunion et intersection (finie)

- Dérivée partielle d'ordre 1. Théorèmes généraux.
- Gradient de f en a, noté $\nabla f(a)$. Les vecteurs gradients sont orthogonaux aux lignes de niveaux.
- \bullet Fonction de classe \mathcal{C}^1 sur un ouvert. Théorèmes généraux (somme, produit, quotient, composition).
- Les fonctions polynômiales sont de classe C^1 sur \mathbb{R}^n .
- DL d'ordre 1 : si f de classe \mathcal{C}^1 sur un ouvert Ω , si $x \in \Omega$, si $h \in \mathbb{R}^n$ alors pour h voisin de $(0, \dots, 0)$,

$$f(x+h) = f(x) + \langle \nabla f(x), h \rangle + ||h|| \cdot \epsilon(h)$$

où $\epsilon(0,...,0) = 0$ et ϵ est continue en (0,...,0).

- Dérivée de g(t) = f(x+th) (avec les bonnes hypothèses) : $g'(t) = \langle \nabla f(x+th), h \rangle$.
- Condition nécessaire d'ordre 1 d'existence d'un extremum local :

Soit f de classe C^1 sur un ouvert Ω de \mathbb{R}^n et $a \in \Omega$.

Si f admet un extremum local en a, alors $\nabla f(a) = 0$

• Point critique : les points où le gradient s'annule.

Chapitre 15 - Fonctions de n variables II

Tous les résultats sont admis

- Dérivées partielles d'ordre 2, notion de fonction de classe \mathcal{C}^2 sur un ouvert Ω .
- Théorème de Schwarz.
- Matrice hessienne $\nabla^2 f(a)$ et forme quadratique associée q_a .
- DL d'ordre 2.
- Dérivée seconde de g(t) = f(a+th) où $f \in \mathcal{C}^2(\Omega)$ et $a \in \Omega$, $h \in \mathbb{R}^n$.
- \bullet Condition suffisante d'obtention d'un extremum local en un point critique, à l'aide de la forme quadratique $q_a.$
- Condition suffisante d'ordre 2 d'obtention d'un extremum local en un point critique, à l'aide du spectre de la matrice hessienne.
- Notion d'ouvert convexe.

Condition suffisante d'obtention d'un extremum global en un point critique sur un ouvert convexe : si a est un point critique de f, si $\forall x \in \Omega$, $Sp(\nabla^2 f(x)) \subset \mathbb{R}_+$ (resp. \mathbb{R}_-) alors f admet en a un minimum global (resp. un maximum global).

- Ensembles **fermés**, ensembles **bornés** de \mathbb{R}^n .
- Pour nous un fermé sera une intersection ou réunion de fermés "simples" (donnés par une inégalité large ou une égalité)...
- Toute fonction continue sur un fermé borné admet un maximum et un minimum.

Méthode d'étude des extrema sur un fermé borné D: on utillise le théorème pour justifier l'existence des extrema. On étudie ensuite les extrema sur l'intérieur $\mathring{\mathbf{D}}$, puis sur le bord de D.

- Extrema sous contraintes linéaires : on fait baisser le nombre de variables si possibles.
- Condition nécessaire pour un extrema sous contrainte : si f admet un extremum en a sous la contrainte \mathcal{C} alors $\nabla f(a) \in Vect(\nabla g_1, \cdots, \nabla g_n)$, où la contrainte linéaire est donnée par $g_1(x) = b_1$, ..., $g_n(x) = b_n$.

FIN DU COURS DE 2ème ANNÉE!!!

Bon courage à tous pour les révisions et surtout bonne chance pour les concours !!!