Quelques exemples et contre-exemples qui peuvent servir :

En analyse:

- Une suite bornée qui n'admet pas de limite : $u_n = (-1)^n$.
- Une suite convergente qui n'est pas monotone : $u_n = \frac{(-1)^n}{n}$.
- $u_n \sim v_n$ mais e^{u_n} pas équivalente à e^{v_n} : $u_n = n^2$ et $v_n = n^2 + n$.
- Une fonction continue sur \mathbb{R} et pas dérivable en un point : la fonction valeur absolue $f: x \mapsto |x|$ est continue sur \mathbb{R} mais pas dérivable en 0 (car $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x-0} = 1$ alors que $\lim_{x\to 0^-} \frac{f(x)-f(0)}{x-0} = -1$).
- Une fonction continue sur \mathbb{R}_+ et pas dérivable en 0: la fonction racine carrée $g: x \mapsto \sqrt{x}$ est continue en 0 mais pas dérivable en 0 puisque $\lim_{x\to 0^+} \frac{g(x)-g(0)}{x-0} = +\infty$ (tangente verticale en 0 à la courbe de g.
- Une fonction paire et périodique : la fonction cos, paire et périodique de période 2π .
- Une fonction impaire et périodique : la fonction sin, impaire et périodique de période 2π .
- Une fonction périodique de période 1 : la fonction $x \mapsto \cos(2\pi . x)$ ou la fonction $x \mapsto \sin(2\pi . x)$. Ces fonctions sont de plus \mathcal{C}^{∞} sur \mathbb{R} (donc continues dérivables etc...).
- Une fonction périodique de période $T>0: x\mapsto \cos(\frac{2\pi}{T}.x)$ ou $x\mapsto \sin(\frac{2\pi}{T}.x)$.
- Une autre fonction périodique de période 1 : la fonction partie décimale $x \mapsto x \lfloor x \rfloor$. Cette fonction n'est pas continue en n, pour tout $n \in \mathbb{Z}$!
- Une fonction croissante mais pas strictement croissante : la fonction partie entière. Il s'agit aussi d'un exemple de fonction non continue en une infinité (dénombrable) de points.
- Une fonction qui vérifie : $\forall x \in \mathbb{R}$, $f(x) \leq f(x+1)$ mais f n'est pas croissante: prendre une fonction 1-périodique ! Par exemple $x \mapsto \sin(2\pi . x)$ vérifie cette relation mais n'est pas du tout monotone.
- Une fonction convexe : la fonction carré, la fonction exp.
- Une fonction concave : la fonction ln.
- Une fonction telle que f'(0) = 0 mais 0 n'est pas un extremum de f: la fonction cube $x \mapsto x^3$.
- Une fonction telle que f''(0) = 0 mais 0 n'est pas un point d'inflexion de f: la fonction $x \mapsto x^4$.

En algèbre:

• Les matrices nilpotentes :

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 vérifie $A^2 = 0$: A est d'indice de nilpotence 2,

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \text{ vérifie } A^2 = 0 : A \text{ est d'indice de nilpotence 2,}$$

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ vérifie } A^2 = 0, B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \text{ vérifie } B^2 = A, \text{ puis } B^3 = 0 : B \text{ est d'indice de nilpotence 2,}$$

d'indice de nilpotence 3.

Plus généralement si
$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 \cdots & 0 & 0 \\ \vdots & & & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}, \text{ alors } A^2 = \begin{pmatrix} 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 \end{pmatrix}$$
 (la

"sur-diagonale" de 1 se décale d'un cran vers la droite à chaque fois)

$$A^{n-1} = \begin{pmatrix} 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & \\ \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix} \text{ et } A^n = 0 \text{ (A est d'indice de nilpotence n)}.$$

- Une matrice non diagonalisable : $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
- Une matrice non diagonalisable mais inversible : $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- Une famille de trois vecteurs deux à deux non colinéaires qui est liée : (u, v, w)où u = (1,0), v = (0,1), w = (1,1).
- Créer une matrice symétrique ou antisymétrique : si A est une matrice carrée, la matrice $B = A + {}^{t} A$ est symétrique, la matrice $C = A - {}^{t} A$ est antisymétrique et on a la décomposition $A = \frac{1}{2}(A + {}^{t}A) + \frac{1}{2}(A - {}^{t}A)$. Idem pour les fonctions paires/impaires!

En probabilités:

- Une variable aléatoire discrète qui n'admet pas d'espérance : X telle que $X(\Omega) = \mathbb{N}^*$ avec pour tout $k \in \mathbb{N}^*$, $P(X = k) = \frac{1}{k(k+1)}$. Alors par télescopage $\sum_{k=1}^{+\infty} P(X = k) = 1$ donc on définit bien une loi mais la série $\sum_k k.P(X = k)$ diverge.
- Une variable aléatoire à densité qui n'admet pas d'espérance : la loi de de Cauchy : X de densité : $\forall x \in \mathbb{R}, f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}$.
- Une variable aléatoire à densité qui n'admet pas d'espérance : penser à une intégrale de Riemann : X de densité

$$f(x) = \begin{cases} 0 \text{ si } x \le 1\\ \frac{1}{x^2} \text{ si } x \ge 1 \end{cases}$$

• Une variable aléatoire à densité qui admet une espérance mais pas de variance : penser à une intégrale de Riemann : X de densité

$$f(x) = \begin{cases} 0 \text{ si } x \le 1\\ \frac{1}{2x^3} \text{ si } x \ge 1 \end{cases}$$

• On peut construire facilement sur le même modèle une variable à densité qui admet un moment d'ordre p mais pas de moment d'ordre p+1.

2