Planche Oral Algèbre 2 - ESCP 2024 - S.3

Exercice principal

Soit un entier $n \geq 2$. Soit $E = \mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées réelles d'ordre n. Pour toute matrice $A \in E$ donnée, on note Φ_A l'endomorphisme de E défini par :

$$\forall M \in E, \Phi_A(M) = AM$$

- 1. Montrer que A et Φ_A ont les mêmes valeurs propres.
- 2. On suppose que A est diagonalisable.
 - (a) Montrer que ${}^{t}A$ est diagonalisable.
 - (b) Montrer que Φ_A est diagonalisable.
- 3. (a) Soient u, v deux endomorphisme d'un espace vectoriel de dimension finie. Montrer que:

$$\dim(Ker(u \circ v)) \le \dim(Ker(u)) + \dim(Ker(v))$$

- (b) Montrer que A est diagonalisable si et seulement si A admet un polynôme annulateur qui n'a que des racines simples.
- (c) On suppose que Φ_A est diagonalisable. Montrer que A est diagonalisable.

Question sans préparation (ESCP 2024)

- 1. Si X suit la loi exponentielle de paramètre 1, déterminer $E(X^k)$ pour $k \in \mathbb{N}$.
- 2. Si Y suit la loi exponentielle de paramètre λ , trouver un équivalent quand $n\to +\infty$ de $E\left(\left(Y-\frac{1}{\lambda}\right)^n\right)$.

Question sans préparation (ESCP 2024)

- 1. Si X suit la loi exponentielle de paramètre 1, déterminer $E(X^k)$ pour $k \in \mathbb{N}$.
- 2. Si Y suit la loi exponentielle de paramètre λ , trouver un équivalent quand $n \to +\infty$ de $E\left(\left(Y \frac{1}{\lambda}\right)^n\right)$.

Question sans préparation (ESCP 2024)

- 1. Si X suit la loi exponentielle de paramètre 1, déterminer $E(X^k)$ pour $k \in \mathbb{N}$.
- 2. Si Y suit la loi exponentielle de paramètre λ , trouver un équivalent quand $n\to +\infty$ de $E\left(\left(Y-\frac{1}{\lambda}\right)^n\right)$.

Question sans préparation (ESCP 2024)

- 1. Si X suit la loi exponentielle de paramètre 1, déterminer $E(X^k)$ pour $k \in \mathbb{N}$.
- 2. Si Y suit la loi exponentielle de paramètre λ , trouver un équivalent quand $n\to +\infty$ de $E\left(\left(Y-\frac{1}{\lambda}\right)^n\right)$.

2