Corrigé Planche Oral Algèbre 2 - ESCP 2024 - S.3

Exercice principal

- 1. Montrons ce résultat par double implication.
 - Supposons que $\lambda \in Sp(A)$. Alors il existe une matrice colonne X non nulle telle que $AX = \lambda.X$. Soit M la matrice carrée définie par M = (X|X|...|X). Alors on a $\Phi_A(M) = AM = (AX|AXL...|AX) = \lambda.M$, avec $M \neq 0$, donc $\lambda \in Sp(\Phi_A)$.
 - Soit $\lambda \in Sp(\Phi_A)$: il existe une matrice M non nulle telle que $AM = \lambda.M$. Notons $M = (C_1|C_2|...|C_n)$. Alors il existe une colonne C_i telle que $C_i \neq 0$, et par la définition du produit matriciel, $AC_i = \lambda C_i$. Ainsi $\lambda \in Sp(A)$.
 - Par double implication, A et Φ_A ont les mêmes valeurs propres.
- 2. (a) Si A est diagonalisable : il existe une matrice inversible P et une matrice diagonale D telles que $A = P.D.P^{-1}$. On a alors ${}^tA = {}^tP^{-1}.{}^tD.{}^tP = ({}^tP)^{-1}.D.{}^tP$ où tP est inversible. Par conséquent, tA est diagonalisable.
 - (b) Comme A est diagonalisable, il existe une base $(C_1, ..., C_n)$ de vecteurs propres de A. Mais alors pour tout i, les matrices $M_{i,1}, ..., M_{i,n}$ égales à $(C_i|0, ...|0)$, à $(0|C_i|0|...|0)$, etc... à $(0|, ...|0|C_i)$ sont vecteurs propres de Φ_A . De plus la famille de ces matrices $(M_{i,j})$ est libre (pas très dur). Etant de cardinal n^2 , c'est une base de $\mathcal{M}_N(\mathbb{R})$. Par conséquent, Φ_A est diagonalisable.
- 3. (a) Soit w la restriction de u à l'image de v i.e. $w = u|_{Im(v)}$. Alors w est une application linéaire de Im(v) dans $Im(u \circ v)$. On a :

$$Kerw = \{y \in Im(v)/u(y) = 0\} = Ker(u) \cap Im(v), Im(w) = \{u(v(x)), x \in E\} = Im(u \circ v)$$

Le théorème du rang appliqué à w, puis à chaque endomorphisme u et v, permet d'écrire

$$\dim(Im(v)) = \dim(Ker(u) \cap Im(v)) + \dim(Im(u \circ v)) \Leftrightarrow \dim(Ker(u \circ v)) \leq \dim(Keru) + \dim(Kerv)$$

(b) Si A est diagonalisable, en prenant $m = \prod_{\lambda \in Sp(M)} (X - \lambda)$, on obtient classiquement que m(A) = 0 (en calculant $m(A).X_i$ où $(X_1, ..., X_n)$ est une base de vecteurs propres de A.

Réciproquement si m(A) = 0.

On généralise la question précédente à plusieurs endomorphismes par récurrence. Il vient donc

$$n \underset{m(A)=0}{=} \dim \left(Ker(\prod_{k=1}^{p} (A - \lambda_k I)) \right) \le \sum_{k=1}^{p} \dim(Ker(A - \lambda_k I)) \le n,$$

car les sous espaces propres sont en somme directe.

Donc $\sum_{k=1}^{P} \dim(Ker(A - \lambda_k I)) = n$, ce qui montre que A est diagonalisable.

1

(c) Si P est un polynôme annulateur de Φ_A , alors P est un polynôme annulateur de A car si $P = \sum a_k . X^k$, pour toute matrice carrée M,

$$0 = P(\Phi_A)(M) = \sum a_k \Phi_A^k(M) = \sum a_k A^k(M) = P(A)$$

donc nécessairement P(A) = 0. Comme Φ_A est diagonalisable, Φ_A possède un polynôme annulateur P n'ayant que des racines simples. Donc A aussi, donc A est diagonalisable.

Question sans préparation

1. Par théorème de transfert, $E(X^k)$ existe si et seulement si $\int_0^{+\infty} t^k e^{-t} dt$ converge absolument.

En utilisant les propriétés de la fonction Gamma, on obtient que $E(X^k)$ existe et vaut $\Gamma(k+1)=k!$

2. Soit $n \in \mathbb{N}^*$. Alors $\left(Y - \frac{1}{\lambda}\right)^n = \frac{(\lambda Y - 1)^n}{\lambda^n} = \frac{(X - 1)^n}{\lambda^n}$, où $X \hookrightarrow \mathcal{E}(1)$.

Et $(X-1)^n = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} X^k$ d'après la formule du binôme.

D'où : $E((X-1)^n) = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} k!$ par linéarité de l'espérance.

Ce résultat s'obtient de façon plus naturelle en utilisant le théorème de transfert et en appliquant le CDV $u = \lambda t$ dans l'intégrale qui exprime $E\left(\left(Y - \frac{1}{\lambda}\right)^n\right)$.

Ainsi :
$$E((X-1)^n) = n! \sum_{k=0}^n \frac{(-1)^{n-k}}{(n-k)!} = n! \sum_{k=0}^n \underbrace{\frac{(-1)^k}{k!}}_{\to_{n\to+\infty} \frac{1}{e}}.$$

$$\text{Ainsi}: E\bigg(\bigg(Y-\frac{1}{\lambda}\bigg)^n\bigg) \underset{n \to +\infty}{\sim} \frac{n!}{\lambda^n e}.$$