Planche Oral - ESCP 2019 - EX. 1.2

On note E l'ensemble des fonctions continues sur [0,1], à valeurs réelles positives. Pour tout $f \in E$, on définit la fonction $\varphi(f)$ par :

$$\forall x \in [0,1], \ \varphi(f)(x) = \int_0^x \sqrt{f(t)} dt$$

- 1. (a) En notant f_0 la fonction constante égale à 1, on a $f_0 \in E$, mais $-f_0 \notin E$. Donc E n'est pas un espace vectoriel.
 - (b) Soit $f \in E$. Par composition, $t \mapsto \sqrt{f(t)}$ est continue sur [0,1]. En notant G une primitive de cette fonction, on a alors :

$$\forall x \in [0,1], \quad \varphi(f)(x) = G(x) - G(0)$$

Comme G est de classe C^1 sur [0,1], $\varphi(f)$ l'est aussi. De plus,

$$\varphi(f)'(x) = G'(x) = \sqrt{f(x)}$$

- (c) Soit f et g deux fonctions de E, telles que $\varphi(f) = \varphi(g)$. Alors leurs dérivées sont égales, donc $\forall x \in [0,1], \sqrt{f(x)} = \sqrt{g(x)}$. D'où $\forall x \in [0,1], f(x) = g(x)$, c'est-à-dire que $f = g : \varphi$ est injective.
- (d) D'après le 1.b), si $f \in E$ alors $\varphi(f) \in \mathcal{C}^1([0,1])$. Par conséquent si g est une fonction continue positive sur [0,1] mais qui n'est pas de classe \mathcal{C}^1 sur [0,1] (par exemple la fonction racine carrée), alors g n'admet pas d'antécédent par φ . Donc φ n'est pas surjective de E dans E.

On note f_0 la fonction constante égale à 1, puis, pour tout $n \in \mathbb{N}$, on pose $f_{n+1} = \varphi(f_n)$.

- 2. (a) Posons pour tout $n \in \mathbb{N}$, $\mathcal{H}(n)$: "il existe des réels $\alpha_n \geq 0$ et $\beta_n \geq 0$ tels que $f_n : x \mapsto \alpha_n . x^{\beta_n}$.
 - <u>Initialisation</u>: si n = 0, $f_0 = 1 = \alpha_0 x^{\beta_0}$ où $\alpha_0 = 1$ et $\beta_0 = 0$.
 - <u>Hérédité :</u> soit $n \in \mathbb{N}$ tel que $\mathcal{H}(n)$ est vraie. Alors $\forall x \in [0, 1]$,

$$f_{(n+1)}(x) = \int_{0}^{x} \sqrt{\alpha_{n}} \cdot t^{\frac{\beta_{n}}{2}} dt$$

$$= [\sqrt{\alpha_{n}} \cdot \frac{1}{\frac{\beta_{n}}{2} + 1} \cdot t^{\frac{\beta_{n}}{2} + 1}]_{0}^{x}$$

$$= \frac{\sqrt{\alpha_{n}}}{\frac{\beta_{n}}{2} + 1} \cdot x^{\frac{\beta_{n}}{2} + 1}$$

$$= \alpha_{n+1} \cdot x^{\beta_{n+1}}$$

donc $\mathcal{H}(n+1)$ vraie.

- (b) $\forall n \in \mathbb{N}, \ \alpha_{n+1} = \frac{\sqrt{\alpha_n}}{\frac{\beta_n}{2}+1} \text{ et } \beta_{n+1} = \frac{\beta_n}{2}+1.$
- (c) (β_n) est une suite AG. Par la méthode classique, on a $\beta_n = 2 2^{1-n}$ (ou récurrence).
- 3. (a) D'une part,

$$\frac{\alpha_{n+2}}{\alpha_{n+1}} = \frac{\frac{\alpha_{n+1}}{\frac{\beta_{n+1}}{2}+1}}{\alpha_{n+1}} = \frac{1}{\sqrt{\alpha_{n+1}}.(\frac{\beta_{n+1}}{2}+1)}$$

D'autre part,

$$\sqrt{\frac{\alpha_{n+1}}{\alpha_n}} = \frac{1}{\sqrt{\alpha_{n+1}} \cdot (\frac{\beta_n}{2} + 1)}$$

De plus pour tout $n \in \mathbb{N}$, $\beta_n = 2 - \frac{1}{2^{n-1}}$ donc la suite (β_n) est croissante. On en déduit que $\frac{\alpha_{n+2}}{\alpha_{n+1}} \le \sqrt{\frac{\alpha_{n+1}}{\alpha_n}}$.

(b) Comme $\alpha_0 = \alpha_1$, par récurrence immédiate pour tout $n \in \mathbb{N}$, $\frac{\alpha_{n+1}}{\alpha_n} \leq 1$. Donc la suite (α_n) et décroissante. Etant minorée par 0, elle converge vers $l \geq 0$. En passant à la limite dans la relation du 2.b), $l = \frac{\sqrt{l}}{2}$ donc l = 0 ou $\sqrt{l} = \frac{1}{2}$: l = 0 ou $l = \frac{1}{4}$.

Montrons par récurrence que pour tout $n \in \mathbb{N}$, $\alpha_n \geq \frac{1}{4}$.

- Initialisation: si n = 0, $\alpha_0 = 1 \ge \frac{1}{4}$.
- <u>Hérédité</u>: soit $n \in \mathbb{N}$ tel que $\alpha_n \geq \frac{1}{4}$. Comme $\alpha_{n+1} = \frac{\sqrt{\alpha_n}}{\frac{\beta_n}{2}+1}$, on a $\sqrt{\alpha_n} \geq \frac{1}{2}$ donc $\alpha_{n+1} \geq \frac{1}{\beta_n+2}$. Comme $\beta_n = 2 2^{1-n}$, on a $\beta_n \leq 2$ donc $\beta_n + 2 \leq 4$ et enfin $\alpha_{n+1} \geq \frac{1}{4}$.
- Bilan : la suite (α_n) est minorée par $\frac{1}{4}$

Ainsi
$$\lim_{n\to+\infty} \alpha_n = \frac{1}{4}$$

4. Soit $n \in \mathbb{N}$. La fonction $x \mapsto |f_n(x) - \frac{1}{4}x^2|$ est continue sur le segment [0,1], donc admet bien un maximum sur ce segment.

Pour tout $x \in [0, 1]$,

$$|f_n(x) - \frac{1}{4}x^2| = |\alpha_n \cdot x^{\beta_n} - \frac{1}{4} \cdot x^2|$$

$$= |\alpha_n \cdot x^{\beta_n} - \frac{1}{4} \cdot x^{\beta_n} + \frac{1}{4} \cdot x^{\beta_n} - \frac{1}{4} \cdot x^2|$$

$$\leq |\alpha_n \cdot x^{\beta_n} - \frac{1}{4} \cdot x^{\beta_n}| + |\frac{1}{4} \cdot x^{\beta_n} - \frac{1}{4} \cdot x^2|$$

$$\leq |\alpha_n - \frac{1}{4}| + \frac{1}{4} \cdot |x^{\beta_n} - x^2| \operatorname{car} x^{\beta_n} \leq 1$$

où on sait déjà que $\lim_{n\to+\infty} \alpha_n - \frac{1}{4} = 0$.

Soit $g: x \mapsto x^{\beta_n} - x^2$. Alors $g'(x) = \beta_n \cdot x^{\beta_n - 1} - 2x$, donc $\forall x \in]0, 1]$,

$$g'(x) = 0 \Leftrightarrow \beta_n \cdot x^{\beta_n - 1} - 2x = 0 \Leftrightarrow x^{\beta_n - 2} = \frac{2}{\beta_n} \Leftrightarrow x = \left(\frac{2}{\beta_n}\right)^{\frac{1}{\beta_n - 2}} = \left(\frac{\beta_n}{2}\right)^{\frac{1}{2 - \beta_n}}$$

Donc

$$Max_{x \in [0,1]} \ |g(x)| = |(\frac{\beta_n}{2})^{\frac{\beta_n}{2-\beta_n}} - (\frac{\beta_n}{2})^{\frac{2}{2-\beta_n}}|$$

On sait que $\beta_n = 2 - \frac{1}{2^{n-1}}$. D'où

$$Max_{x \in [0,1]} |g(x)| = |(\frac{\beta_n}{2})^{2^{n-1} \cdot \beta_n} - (\frac{\beta_n}{2})^{2^n}| = (\frac{\beta_n}{2})^{2^{n-1}} \cdot ((\frac{\beta_n}{2})^{\beta_n} - (\frac{\beta_n}{2})^2)$$

D'une part, comme $\lim_{n\to+\infty}\beta_n=2$, on a $\lim_{n\to+\infty}(\frac{\beta_n}{2})^{\beta_n}-(\frac{\beta_n}{2})^2)=1-1=0$. D'autre part, comme $\lim_{n\to+\infty}\frac{\beta_n}{2}=1$, on a $\ln(\frac{\beta_n}{2})\sim_{n\to+\infty}\frac{\beta_n}{2}-1=\frac{1}{2^n}$. Ainsi

$$(\frac{\beta_n}{2})^{2^{n-1}} = \exp(2^{n-1}.\ln(\frac{\beta_n}{2}))$$

et

$$2^{n-1} \cdot \ln(\frac{\beta_n}{2} \sim_{n \to +\infty} 2^{n-1} \cdot \frac{1}{2^n} = \frac{1}{2}$$

donc $\lim_{n\to+\infty} (\frac{\beta_n}{2})^{2^{n-1}} = \exp(\frac{1}{2})$ et enfin par produit $\lim_{n\to+\infty} Max_{x\in[0,1]} |g(x)| = 0$ et par majoration, $\lim_{n\to+\infty} M_n = 0$

Question sans préparation

Le système en question est équivalent à

$$\begin{cases} v = 1 - u \\ (X - Y)u = Z - Y \end{cases}$$

et ce système a une infinité de solutions ssi X-Y=0 (car sinon il n'y aurait qu'une seule solution) et Z-Y=0 (car sinon il n'y en aurait aucune). On cherche donc à calculer la probabilité de X=Y=Z.

$$P(X = Y = Z) = \sum_{k=1}^{+\infty} P([X = k] \cap [Y = k] \cap [Z = k])$$

$$= \sum_{k=1}^{+\infty} (pq^{k-1})^3 \text{ par indépendance}$$

$$= p^3 \cdot \sum_{i=0}^{+\infty} (q^3)^i$$

$$= p^3 \cdot \frac{1}{1 - q^3}$$