Planche Oral - ENSAE 2021 - Planche 5

Ce sujet est composé de deux exercices.

Le candidat doit les traiter tous les deux puis les exposer dans l'ordre de son choix.

Exercice 1

Soit $x \in \mathbb{R}_+$. On pose :

$$f(x) = \int_0^{+\infty} \frac{dt}{x + e^t}$$

On ne cherchera pas à calculer cette intégrale dans les questions 1)2)3)

- 1. Montrer que l'intégrale f(x) est convergente.
- 2. Soient $x, y \in \mathbb{R}_+$ tels que x < y. Montrer que $0 < f(x) - f(y) \le \frac{y-x}{2}$.
- 3. (a) Montrer que:

$$\forall x \in \mathbb{R}_+, \forall t \in \mathbb{R}_+, 2\sqrt{xe^t} \le x + e^t$$

- (b) Montrer que f réalise une bijection continue et strictement décroissante de \mathbb{R}_+ sur]0,1].
- 4. Calculer cette intégrale (on pourra éventuellement effectuer le changement de variable $u = x + e^t$).

Exercice 2

On note p un réel de]0,1[et q=1-p.

On dit qu'une variable X suit la loi de Rademacher de paramètre p si $X(\Omega) = \{-1, 1\}$ et si :

$$P(X = 1) = p$$
 $P(X = -1) = q$

On note $X \hookrightarrow \mathcal{R}(p)$.

Dans tout l'exercice, on considère une suite $(X_k)_{k\in\mathbb{N}}$ de variables aléatoires indépendantes suivant toutes la loi de Rademacher de paramètre p.

- 1. Calculer $E(X_k)$ et $Var(X_k)$.
- 2. Pour tout entier naturel n, on définit la variable aléatoire T_n :

$$T_n = \prod_{k=0}^n X_k$$

- (a) Calculer $E(T_n)$.
- (b) En déduire la loi de T_n .
- 3. Soit K une variable aléatoire indépendante des X_k et suivant la loi de Poisson de paramètre λ ($\lambda > 0$).

On pose, pour tout ω de Ω :

$$T(\omega) = \prod_{k=0}^{K(\omega)} X_k(\omega)$$

1

On admet que T est une variable aléatoire.

- (a) Calculer E(T).
- (b) Donner la loi de T.