Planche Oral Analyse 4 - ESCP 2023 - Sujet 2.10

- 1. (a) Pour tout $n \in \mathbb{N}$, montrer la convergence de l'intégrale $I_n = \int_{-\infty}^{+\infty} t^n e^{-t^2} dt$.
 - (b) Sans faire de calcul de primitive, donner les valeurs des intégrales I_0 , I_1 et I_2 .
 - (c) Que dire de I_3 ? Calculer I_4 .
- 2. Montrer que pour tous réels x et y la convergence de $\frac{4}{\sqrt{\pi}} \int_{-\infty}^{+\infty} (t-x)^2 (t-y)^2 e^{-t^2} dt$. On appelle G(x,y) cette intégrale. Exprimer G(x,y) sans signe intégral, en fonction de x et y.
- 3. Déterminer les extrémums locaux et globaux de la fonction G.

Planche Oral Analyse 4 - ESCP 2023 - Sujet 2.10

- 1. (a) Pour tout $n \in \mathbb{N}$, montrer la convergence de l'intégrale $I_n = \int_{-\infty}^{+\infty} t^n e^{-t^2} dt$.
 - (b) Sans faire de calcul de primitive, donner les valeurs des intégrales I_0 , I_1 et I_2 .
 - (c) Que dire de I_3 ? Calculer I_4 .
- 2. Montrer que pour tous réels x et y la convergence de $\frac{4}{\sqrt{\pi}} \int_{-\infty}^{+\infty} (t-x)^2 (t-y)^2 e^{-t^2} dt$. On appelle G(x,y) cette intégrale. Exprimer G(x,y) sans signe intégral, en fonction de x et y.
- 3. Déterminer les extrémums locaux et globaux de la fonction G.

Question sans préparation

On considère une suite $(X_n)_{n\geq 1}$ de variables aléatoires indépendantes définies sur le même espace probabilisé (Ω, \mathcal{A}, P) et qui suivent toutes la loi uniforme sur [0, 1]. Pour chaque $n\geq 1$, on définit la variable aléatoire Y_n en posant

$$Y_n(\omega) = [X_1(\omega) \times \cdots \times X_n(\omega)]^{\frac{1}{n}}$$

- 1. Calculer l'espérance et la variance de Y_n . Etudier la convergence de la suite $(E(Y_n))$.
- 2. Montrer que la suite $(Y_n)_{n\geq 1}$ converge en probabilité vers une variable certaine.

Question sans préparation

On considère une suite $(X_n)_{n\geq 1}$ de variables aléatoires indépendantes définies sur le même espace probabilisé (Ω, \mathcal{A}, P) et qui suivent toutes la loi uniforme sur [0, 1]. Pour chaque $n\geq 1$, on définit la variable aléatoire Y_n en posant

$$Y_n(\omega) = [X_1(\omega) \times \cdots \times X_n(\omega)]^{\frac{1}{n}}$$

- 1. Calculer l'espérance et la variance de Y_n . Etudier la convergence de la suite $(E(Y_n))$.
- 2. Montrer que la suite $(Y_n)_{n\geq 1}$ converge en probabilité vers une variable certaine.

Question sans préparation

On considère une suite $(X_n)_{n\geq 1}$ de variables aléatoires indépendantes définies sur le même espace probabilisé (Ω, \mathcal{A}, P) et qui suivent toutes la loi uniforme sur [0, 1]. Pour chaque $n\geq 1$, on définit la variable aléatoire Y_n en posant

$$Y_n(\omega) = [X_1(\omega) \times \cdots \times X_n(\omega)]^{\frac{1}{n}}$$

- 1. Calculer l'espérance et la variance de Y_n . Etudier la convergence de la suite $(E(Y_n))$.
- 2. Montrer que la suite $(Y_n)_{n\geq 1}$ converge en probabilité vers une variable certaine.

Question sans préparation

On considère une suite $(X_n)_{n\geq 1}$ de variables aléatoires indépendantes définies sur le même espace probabilisé (Ω, \mathcal{A}, P) et qui suivent toutes la loi uniforme sur [0, 1]. Pour chaque $n\geq 1$, on définit la variable aléatoire Y_n en posant

$$Y_n(\omega) = [X_1(\omega) \times \cdots \times X_n(\omega)]^{\frac{1}{n}}$$

- 1. Calculer l'espérance et la variance de Y_n . Etudier la convergence de la suite $(E(Y_n))$.
- 2. Montrer que la suite $(Y_n)_{n\geq 1}$ converge en probabilité vers une variable certaine.