Planche Oral Analyse 6: ESCP

- 1. Soient f et g deux fonctions continues sur $]0, +\infty[$ à valeurs strictement positives telles que les intégrales $\int_0^{+\infty} f(t)dt$ et $\int_0^{+\infty} g(t)dt$ convergent et valent 1. Soit λ un réel de [0,1].
 - (a) Montrer que, $\forall t > 0$, $(f(t))^{\lambda}(g(t))^{1-\lambda} \leq \lambda f(t) + (1-\lambda)g(t)$.
 - (b) En déduire que l'intégrale $\int_0^{+\infty} (f(t))^{\lambda} (g(t))^{1-\lambda} dt$ converge et que

$$\int_{0}^{+\infty} (f(t))^{\lambda} (g(t))^{1-\lambda} dt \le 1$$

2. Soient f et g deux fonctions continues sur $]0, +\infty[$ à valeurs strictement positives telles que les intégrales $\int_0^{+\infty} f(t)dt$ et $\int_0^{+\infty} g(t)dt$ convergent et $\lambda \in [0,1]$.

En utilisant la question précédente, montrer que:

$$\int_0^{+\infty} (f(t))^{\lambda} (g(t))^{1-\lambda} dt \le \left(\int_0^{+\infty} f(t) dt \right)^{\lambda} \left(\int_0^{+\infty} g(t) dt \right)^{1-\lambda}$$

3. On rappelle que: $\forall x > 0$, $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$ et que pour tout x > 0, $\Gamma(x) > 0$.

On définit alors la fonction G sur $]0, +\infty[$ par $G: x \mapsto \ln(\Gamma(x)).$

Établir que pour tout $\lambda \in [0,1]$ et $\forall (x,y) \in]0,+\infty[^2$ on a:

$$\Gamma(\lambda x + (1 - \lambda)y) \le (\Gamma(x))^{\lambda} (\Gamma(y))^{1-\lambda}$$

Que peut-on en déduire pour la fonction G?

- 4. Soient x et y deux réels strictement positifs. On suppose que $y \geq 1$.
 - (a) Montrer que $G(x+1) \le \left(1 \frac{1}{y}\right)G(x) + \frac{1}{y}G(x+y)$.
 - (b) En déduire que $\Gamma(x+y) \ge x^y \Gamma(x)$.
- 5. Soient x et y deux réels strictement positifs. On suppose que $y \leq 1$. Montrer que:

$$\Gamma(x+y) \le x^y \Gamma(x)$$

1

QUESTION SANS PREPARATION

Soit $n \in \mathbb{N}^*$. On lance 2n+1 fois une pièce équilibrée. Pour tout $k \in [[1,2n+1]]$, soit A_k l'événement : "le lancer k a donné Pile et on a obtenu (n+1) Piles à l'issue des k premiers lancers ".

- 1. Calculer $P(A_k)$, pour $k \in [[1, 2n + 1]]$.
- 2. En déduire que $\sum_{k=n+1}^{2n+1} \frac{1}{2^k} {k-1 \choose n} = \frac{1}{2}$.

QUESTION SANS PREPARATION

Soit $n \in \mathbb{N}^*$. On lance 2n+1 fois une pièce équilibrée. Pour tout $k \in [[1, 2n+1]]$, soit A_k l'événement : "le lancer k a donné Pile et on a obtenu (n+1) Piles à l'issue des k premiers lancers ".

- 1. Calculer $P(A_k)$, pour $k \in [[1, 2n + 1]]$.
- 2. En déduire que $\sum_{k=n+1}^{2n+1} \frac{1}{2^k} {k-1 \choose n} = \frac{1}{2}$.

QUESTION SANS PREPARATION

Soit $n \in \mathbb{N}^*$. On lance 2n+1 fois une pièce équilibrée. Pour tout $k \in [[1,2n+1]]$, soit A_k l'événement : "le lancer k a donné Pile et on a obtenu (n+1) Piles à l'issue des k premiers lancers ".

2

- 1. Calculer $P(A_k)$, pour $k \in [[1, 2n + 1]]$.
- 2. En déduire que $\sum_{k=n+1}^{2n+1} \frac{1}{2^k} {k-1 \choose n} = \frac{1}{2}$.