Planche Oral Algèbre 6 - ESCP 2023 - Ex.1.6

On note F l'espace vectoriel des fonctions de \mathbb{R}_+^* dans \mathbb{R} , E le sous-espace vectoriel de F des fonctions polynomiales et, pour tout $n \in \mathbb{N}$, E_n le sous-espace vectoriel de E des fonctions polynomiales de degré inférieur ou égal à n.

On considère l'endomorphisme $D: f \mapsto D(f)$ de F, où la fonction D(f) est définie par

$$\forall x \in \mathbb{R}$$
, $[D(f)](x) = f(x+1) - f(x)$.

- 1. (a) Justifier que, pour tout $n \in \mathbb{N}$, E_n est stable par D. On note alors Δ_n l'endomorphisme de E_n induit par D.
 - (a) Pour $n \in \mathbb{N}^*$, déterminer le noyau et l'image de Δ_n .
 - (b) Pour $n \in \mathbb{N}^*$, déterminer les valeurs propres et les vecteurs propres de Δ_n . L'endomorphisme Δ_n est-il diagonalisable?
 - (c) Pour $n \in \mathbb{N}^*$, justifier que pour tout $Q \in E_{n-1}$, il existe un unique $P \in E_n$ tel que $\Delta_n(P) = Q$ et P(0) = 0.
 - (d) Expliciter P lorsque $Q(x)=x^2$. Utiliser P pour retrouver la valeur de $S_n=\sum_{k=1}^n k^2$ pour $n\in\mathbb{N}^*$.
- 2. (a) Soit $\phi: [0,1] \to \mathbb{R}$ une fonction, et $g \in F$. Montrer qu'il existe une unique fonction $f \in F$ telle que D(f) = g et $\forall x \in [0,1]$, $f(x) = \phi(x)$.
 - (b) L'endomorphisme D est-il surjectif?
 - (c) Montrer que, pour tout $\lambda \in \mathbb{R}$, il existe une fonction $f \in F$, différente de la fonction nulle, telle que $D(f) = \lambda f$.

Question sans préparation

Soient X et Y deux variables aléatoires indépendantes, X de loi normale $\mathcal{N}(m, \sigma^2)$ et Y de loi normale $\mathcal{N}(\mu, \sigma^2)$. Déterminer une condition nécessaire et suffisante sur (m, μ) pour que

$$P(Y \le X) \ge \frac{1}{2}$$

Question sans préparation

Soient X et Y deux variables aléatoires indépendantes, X de loi normale $\mathcal{N}(m, \sigma^2)$ et Y de loi normale $\mathcal{N}(\mu, \sigma^2)$. Déterminer une condition nécessaire et suffisante sur (m, μ) pour que

$$P(Y \le X) \ge \frac{1}{2}$$

Question sans préparation

Soient X et Y deux variables aléatoires indépendantes, X de loi normale $\mathcal{N}(m, \sigma^2)$ et Y de loi normale $\mathcal{N}(\mu, \sigma^2)$. Déterminer une condition nécessaire et suffisante sur (m, μ) pour que

$$P(Y \le X) \ge \frac{1}{2}$$

Question sans préparation

Soient X et Y deux variables aléatoires indépendantes, X de loi normale $\mathcal{N}(m, \sigma^2)$ et Y de loi normale $\mathcal{N}(\mu, \sigma^2)$. Déterminer une condition nécessaire et suffisante sur (m, μ) pour que

$$P(Y \le X) \ge \frac{1}{2}$$