Corrigé du DM n° 3 - pour le mardi 7 octobre 2025

Exercice 1 : un endomorphisme de $\mathcal{C}(\mathbb{R})$

1. (a) La fonction f est continue sur \mathbb{R} .

Donc pour tout $x\in\mathbb{R}$, l'intégrale $T(f)(x)=\int_x^{x+1}f(t)dt$ existe bien. Ainsi T(f) est définie sur \mathbb{R} .

De plus, comme f est continue sur \mathbb{R} , elle admet une primitive F sur \mathbb{R} . Alors pour tout $x \in \mathbb{R}$,

$$T(f)(x) = F(x+1) - F(x)$$

Comme F est primitive d'une fonction continue, $F \in \mathcal{C}^1(\mathbb{R})$. On en déduit que T(f) est de classe \mathcal{C}^1 sur \mathbb{R} . De plus,

$$\forall x \in \mathbb{R}, (T(f))'(x) = f(x+1) - f(x)$$

(b) Soit f l'application telle que $\forall x \in \mathbb{R}, f(x) = \sin(2\pi x)$. Pour tout $x \in \mathbb{R}$,

$$T(f)(x) = \int_{x}^{x+1} \sin(2\pi t) dt$$

$$= \left[-\frac{1}{2\pi} \cdot \cos(2\pi t) \right]_{x}^{x+1}$$

$$= -\frac{1}{2\pi} \cdot (\cos(2\pi x + 2\pi) - \cos(2\pi x))$$

$$= 0 \text{ par périodicité du sinus}$$

Ainsi T(f) est l'application nulle : $T(f) = 0_{\mathcal{L}(E)}$.

2. (a) Soit $(f,g) \in E^2$ et $\alpha \in \mathbb{R}$. Alors $\alpha \cdot f + g \in \mathbb{R}$, et pour tout $x \in \mathbb{R}$,

$$T(\alpha.f+g)(x) = \int_{x}^{x+1} \alpha.f(t) + g(t)dt$$
$$= \alpha. \int_{x}^{x+1} f(t)dt + \int_{x}^{x+1} g(t)dt$$
$$= \alpha.T(f)(x) + T(g)(x)$$

et on en déduit que $T(\alpha.f+g)=\alpha.T(f)+T(g)$ donc T est linéaire. D'après ce qui précède, pour tout $f\in E,\,T(f)$ est de classe $\mathcal{C}^1(\mathbb{R})$ donc T(f) est continue et $T(f)\in E$.

Bilan: T est un endomorphisme de E

(b) En considérant la fonction du 2., $x \mapsto f(x) = \sin(2\pi . x)$, nous avons vu que T(f) = 0. Ainsi $f \in \ker(T)$ mais $f \neq 0_{\mathcal{L}(E)} : T$ n'est pas injective. Par ailleurs, pour tout $f \in E$, la fonction T(f) est de classe \mathcal{C}^1 sur \mathbb{R} . Il existe donc des fonctions $g \in E$ n'ayant pas d'antécédent sur \mathbb{R} : il suffit de prendre une fonction qui est continue mais pas de classe \mathcal{C}^1 sur \mathbb{R} , par exemple la valeur absolue.

- 3. Soit $F = \mathbb{R}_2[x]$. On rappelle que F est un sous-espace vectoriel de E.
 - (a) Soit $P \in F$: il existe $(a, b, c) \in \mathbb{R}^3$ tels que pour tout $t \in \mathbb{R}$, $P(t) = at^2 + bt + c$. Alors pour tout $x \in \mathbb{R}$.

$$T(P)(x) = \int_{x}^{x+1} at^{2} + bt + c dt$$

$$= \left[\frac{1}{3}a.t^{3} + \frac{1}{2}.bt^{2} + ct\right]_{x}^{x+1}$$

$$= \frac{1}{3}a.(x+1)^{3} + \frac{1}{2}b.(x+1)^{2} + c.(x+1) - \frac{1}{3}.x^{3} - \frac{1}{2}bx^{2} - cx$$

$$= \frac{1}{3}a.(3x^{2} + 3x + 1) + \frac{1}{2}b.(2x+1) + c$$

et la fonction obtenue est bien un polynôme de degré inférieur ou égal à 2. Ainsi $T(P) \in {\cal F}.$

 $\underline{\text{Bilan}}$: F est stable par T

(b) Comme F est stable par T, on peut considérer U l'endomorphisme induit par T sur F.

En reprenant les calculs précédents, on obtient que :

$$U(f_0) = T(f_0) = f_0, \ U(f_1) = T(f_1) = f_1 + \frac{1}{2}f_0, \ U(f_2) = T(f_2) = f_2 + f_1 + \frac{1}{3}f_0$$

Ainsi

$$A = Mat_{\mathcal{C}}(U) = \begin{pmatrix} 1 & 1/2 & 1/3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

(c) Cette matrice A est triangulaire inférieure sans 0 sur la diagonale. Elle est donc inversible et U est bijectif. Ainsi U est un automorphisme de F.

De plus, cette matrice étant triangulaire, ses valeurs propres sont ses coefficients diagonaux, donc $Sp(U)=\{1\}.$

Supposons A diagonalisable. Alors il existerait une matrice inversible P telle que

$$A = P.Diag(1, 1, 1).P^{-1} = P.I.P^{-1} = I$$

Absurde car $A \neq I$!!

Donc A n'est pas diagonalisable.

Bilan : U est un automorphisme de F, mais U n'est pas diagonalisable

- 4. Pour tout $a \in \mathbb{R}$, on définit g_a l'application où $\forall x \in \mathbb{R}, g_a(x) = \exp(ax)$.
 - (a) Question Préliminaire
 - i. h est continue sur \mathbb{R}^* par quotient. Par équivalence classique $e^u-1\sim_{u\to 0}u$, donc $\lim_{u\to 0}h(u)=1=h(0)$, donc h est aussi continue en 0. Donc h est continue sur \mathbb{R} . On obtient sans problème: $\lim_{u\to -\infty}h(u)=0$, et par croissances comparées $\lim_{u\to +\infty}h(u)=+\infty$.

ii. Par quotient de fonctions dérivables avec le dénominateur qui ne s'annule pas, h est dérivable sur $]-\infty;0[$ et sur $]0;+\infty[$. Pour tout $x\in\mathbb{R}^*$,

$$h'(x) = \frac{e^x \cdot x - (e^x - 1)}{x^2} = \frac{e^x (x - 1) + 1}{x^2}$$

donc h'(x) est du signe de $e^x(x-1)+1$.

Notons pour tout $x \in \mathbb{R}$, $\varphi(x) = e^x \cdot (x-1) + 1$. La fonction φ est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$,

$$\varphi'(x) = e^x \cdot (x-1) + e^x = x \cdot e^x$$

Donc $\forall x \in \mathbb{R}_{-}, \varphi'(x) \leq 0 \text{ et } \forall x \in \mathbb{R}_{+}, \varphi'(x) \geq 0.$

La fonction φ est donc décroissante sur $]-\infty,0[$, croissante sur $[0;+\infty[$ et elle admet donc pour minimum g(0)=0. Par conséquent, la fonction φ est positive sur $\mathbb R$ (et même strictement positive sur $\mathbb R^*$). On en déduit pour tout $x\in\mathbb R^*$, h'(x)>0. La fonction h est donc strictement croissante sur $]-\infty;0[$ et $]0;+\infty[$. Etant continue en 0, on en déduit qu'elle est strictement croissante sur $\mathbb R$.

Finalement, h est continue et strictement croissante sur \mathbb{R} , donc bijective de \mathbb{R} sur $\lim_{x\to-\infty} h(x)$; $\lim_{x\to+\infty} h(x)$ [=]0; $+\infty$ [.

- (b) Soit $a \in \mathbb{R}$.
 - <u>1er cas</u>: supposons $a \neq 0$. Pour tout $x \in \mathbb{R}$.

$$T(g_a)(x) = \left[\frac{1}{a} e^{at}\right]_x^{x+1} = \frac{1}{a} \cdot (e^{ax+a} - e^{ax}) = \frac{e^a - 1}{a} \cdot e^{ax} = \frac{e^a - 1}{a} \cdot g_a(x)$$

Ainsi $T(g_a) = \frac{e^a - 1}{a} g_a$. On en déduit que g_a est un vecteur propre de T associé à la valeur propre $h(a) = \frac{e^a - 1}{a}$.

• <u>2ème cas</u>: supposons a = 0. Alors q_0 est la fonction constante égale à 1. Pour tout $x \in \mathbb{R}$,

$$T(g_0)(x) = \int_x^{x+1} 1 \ dt = 1 = g_0(x)$$

Donc $T(g_0) = g_0$: g_0 est un vecteur propre de T associé à la valeur propre 1 = h(0).

Bilan: pour tout $a \in \mathbb{R}$, g_a est un vecteur propre de T associé à la valeur propre h(a) Comme la fonction h est bijective de \mathbb{R} sur $]0; \infty[$, pour tout réel strictement positif λ , il existe $a \in \mathbb{R}$ tel que $\lambda = h(a)$ donc λ est une valeur propre g_a .

Par conséquent, $\overline{}$ tout réel strictement positif est une valeur propre de \overline{T}

Remarquons que T est un endomorphisme d'un e.v. de dimension infinie, il est donc possible que T ait une infinité de valeurs propres.

(c) Soit $n \in \mathbb{N}$ et $\mathcal{B} = (g_0, \dots, g_n)$. Comme l'application h est injective, g_0, \dots, g_n sont des vecteurs propres de T associés à des valeurs propres $h(0), h(1), \dots, h(n)$ deux à deux distinctes. D'après le cours, la famille \mathcal{B} est libre.

Exercice 2 : un exercice sur la trace

1. (a) D'après le cours, l'application tr est une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$, c'est-à-dire une application linéaire de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} .

Ainsi $\operatorname{Im}(tr) \subset \mathbb{R}$ et $\operatorname{Im}(tr)$ est un sous espace vectoriel de \mathbb{R} .

Ainsi :
$$\dim(\operatorname{Im}(tr)) \leq \underline{\dim(\mathbb{R})}$$
. Donc : $\dim(\operatorname{Im}(tr)) \in \{0, 1\}$.

$$tr(I_n) = n \neq 0$$
. Ainsi $\operatorname{Im}(tr) \neq \{0_{\mathbb{R}}\}$. Ainsi, $\operatorname{dim}(\operatorname{Im}(tr)) \geq 1$.

Bilan :
$$\dim(\operatorname{Im}(tr)) = 1$$

$$\operatorname{Im}(tr) \subset \mathbb{R} \text{ et } \dim(\operatorname{Im}(tr)) = \dim(\mathbb{R}) \text{ donc } : \boxed{\operatorname{Im}(tr) = \mathbb{R}}$$

(b) D'après le théorème du rang,

$$\dim(\ker(Tr)) = \dim(\mathscr{M}_n(\mathbb{R})) - \dim(\operatorname{Im}(Tr)) = n^2 - 1$$

(c) Tout d'abord,

$$\dim(\ker(Tr)) + \dim(Vect(I)) = n^2 - 1 + 1 = n^2 = \dim(\mathscr{M}_n(\mathbb{R})) \quad (i)$$

Montrons que $\ker(tr) \cap Vect(I) = \{0_{\mathscr{M}_n(\mathbb{R})}\}$ en procédant par double inclusion.

- $\ker(tr)$ et Vect(I) sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{R})$, donc $\{0_{\mathcal{M}_n(\mathbb{R})}\} \subset \ker(tr) \cap Vect(I)$
- Soit $M \in \ker(tr) \cap Vect(I)$. Montrons que $M = 0_{\mathscr{M}_n(\mathbb{R})}$. $M \in Vect(I)$ donc $\exists \alpha \in \mathbb{R}$ tel que $M = \alpha I$. $M \in \ker(tr)$ donc tr(M) = 0. Ainsi $tr(\alpha I) = 0$ donc $\alpha n = 0$. $n \neq 0$ donc $\alpha = 0_{\mathbb{R}}$ donc $M = 0_{\mathscr{M}_n(\mathbb{R})}$. Ainsi $\ker(tr) \cap Vect(I) \subseteq \{0_{\mathscr{M}_n(\mathbb{R})}\}$
- Par double inclusion : $\ker(tr) \cap Vect(I) = \{0_{\mathcal{M}_n(\mathbb{R})}\}(ii)$

Bilan : d'après (i) et (ii), on a bien
$$\ker(Tr) \oplus Vect(I) = \mathcal{M}_n(\mathbb{R})$$

- 2. Soit f l'application qui, à toute matrice M de $\mathfrak{M}_n(\mathbb{R})$ associe $f(M) = M + \operatorname{tr}(M)I$
 - (a) (i) Montrons que f est linéaire. Soient $(M_1, M_2) \in (\mathcal{M}_n(\mathbb{R}))^2$ et $\alpha \in \mathbb{R}$.

$$\begin{array}{ll} f(M_1+\alpha M_2) &=& (M_1+\alpha M_2)+tr(M_1+\alpha M_2)I\\ &=& M_1+\alpha M_2+(tr(M_1)+\alpha tr(M_2))\,I \text{ par linéarité de la trace}\\ &=& M_1+tr(M_1)I+\alpha\,(M_2+tr(M_2)I)\\ &=& f(M_1)+\alpha f(M_2) \end{array}$$

Donc f est linéaire.

(ii) Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrons que $f(M) \in \mathcal{M}_n(\mathbb{R})$.

 $\mathrm{Tr}(M)\in\mathbb{R}$ donc, $M+\mathrm{Tr}(M)I$ est une combinaison linéaire des matrices I et M. Ainsi $M+\mathrm{Tr}(M)I\in\mathscr{M}_n(\mathbb{R}),$ donc $f(M)\in\mathscr{M}_n(\mathbb{R})$

Grâce à (i) et (ii), f est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$

(b) f(I) = I + tr(I)I = (n+1)I.

N. Marconnet - Lycée Saint Just

Par ailleurs, $n+1 \in \mathbb{R}$ et $I \neq 0_{\mathcal{M}_n(\mathbb{R})}$

donc
$$n+1$$
 est une valeur propre de f .

De plus, I est un vecteur propre pour f associé à la valeur propre n+1.

(c) Soit $B \in \ker(tr)$.

$$f(B) = B + tr(B)I = B \operatorname{car} tr(B) = 0_{\mathbb{R}}.$$

On a montré que dim $(\ker(tr)) = \dim (\mathcal{M}_n(\mathbb{R})) - 1 = n^2 - 1$.

n > 2 donc $n^2 > 4$ donc dim $(\ker(tr)) > 3 > 0$.

Ainsi, il existe une matrice $B_0 \in \ker(tr)$ non nulle.

ainsi
$$B_0 \neq 0_{\mathcal{M}_n(\mathbb{R})}$$
 et $f(B_0) = B_0$.

Donc : 1 est une valeur propre de f

(d) On a montré que 1 et n+1 sont **des** valeurs propres de f. Par ailleurs, $n+1 \neq 1$.

$$1 \in \operatorname{Sp}(f) \operatorname{donc} \left[\dim \left(E_{n+1}(f) \right) \ge 1 \right]$$

On a montré que $\forall B \in \ker(tr), B \in E_1(f)$. Ainsi $\ker(tr) \subset E_1(f)$.

Donc dim
$$(\ker(tr)) \le \dim(E_1(f))$$
. Ainsi $\dim(E_1(f)) \ge n^2 - 1$.

Par somme : $\dim (E_1(f)) + \dim (E_{n+1}(f)) > n^2$.

Donc dim
$$(E_1(f))$$
 + dim $(E_{n+1}(f))$ \geq dim $(\mathcal{M}_n(\mathbb{R}))$.

On a donc fait le plein de valeurs propres.

Par ailleurs, grâce à l'inégalité sur les dimensions des sous-espaces propres :

$$n^2 \le \dim(E_1(f)) + \dim(E_{n+1}(f)) \le \sum_{\lambda \in \operatorname{Sp}(f)} \dim(E_{\lambda}(f)) \le \underbrace{\dim(\mathscr{M}_n(\mathbb{R}))}_{=n^2}$$

donc: $\dim (E_1(f)) + \dim (E_{n+1}(f)) = \sum_{\lambda \in \operatorname{Sp}(f)} \dim (E_{\lambda}(f)) = \dim (\mathscr{M}_n(\mathbb{R}))$

L'endomorphisme
$$f$$
 est diagonalisable,
 $\operatorname{Sp}(f) = \{1, n+1\}, \dim(E_{n+1}(f)) = 1$ et
 $\dim(E_1(f)) = n^2 - 1$

- (e) Comme $0 \notin \text{Sp}(f)$, f est un automorphisme de $\mathcal{M}_n(\mathbb{R})$.
- 3. Soit J une matrice non nulle de $\mathfrak{M}_n(\mathbb{R})$ dont la trace est nulle.

Soit q l'application qui, à toute matrice M de $\mathfrak{M}_n(\mathbb{R})$ associe $q(M) = M + \operatorname{tr}(M)J$. On admet que q est un endomorphisme de $\mathfrak{M}_n(\mathbb{R})$.

(a) $P(q) = qoq - 2q + Id_{M_{-}}(\mathbb{R})$

Montrons que
$$gog - 2g + Id_{\mathscr{M}_n(\mathbb{R})} = 0_{\mathscr{L}(\mathscr{M}_n(\mathbb{R}))}$$
.

Soit
$$M \in \mathcal{M}_n(\mathbb{R})$$

$$\begin{split} \left(gog-2g+Id_{\mathscr{M}_{n}(\mathbb{R})}\right)(M) &=g\left(g\left(M\right)\right)-2g(M)+M\\ &=g\left(M+\underbrace{tr(M)J}_{\in\mathbb{R}}\right)-2\left(M+tr(M)J\right)+M\\ &=g\left(M\right)+tr(M)g\left(J\right)-M-2tr(M)J\text{ car }g\text{ est linéaire}\\ &=M+tr(M)J+tr(M)\left(J+\underbrace{tr(J)J}_{=0}\right)-M-2tr(M)J\\ &=0_{\mathscr{M}_{n}(\mathbb{R})} \end{split}$$

Bilan:

le polynôme $X^2 - 2X + 1$ est un polynôme annulateur de l'endomorphisme q.

(b) $P = X^2 - 2X + 1$ a pour unique racine 1. Comme $Sp(q) \subset \{\text{racines de } P\},$ $Sp(g) \subset \{1\}$

Par ailleurs, q(J) = J et J n'est pas la matrice nulle donc 1 est une valeur propre de q. donc $\{1\} \subset \operatorname{Sp}(q)$

Par double inclusion : $Sp(q) = \{1\}$

Bilan : 1 est la seule valeur propre de q.

(c) Montrons par l'aburde que q n'est pas diagonalisable.

On suppose que g est diagonalisable.

q est supposée diagonalisable donc il existe une base \mathscr{B}'' de $\mathscr{M}_n(\mathbb{R})$ dans la matrice $H \in \mathcal{M}_{n^2}(\mathbb{R})$ est diagonale avec sur la diagonale les valeurs propres de a c'est à dire 1.

ainsi $H = I_{n^2}$. Ainsi $g = Id_{\mathscr{M}_n(\mathbb{R})}$. Or on sait que g(I) = I + nJ, mais $nJ \neq 0_{\mathcal{M}_n(\mathbb{R})}$ donc $g(I) \neq I$ Ainsi $g \neq Id_{\mathcal{M}_n(\mathbb{R})}$ ce qui est absurde.

Bilan : q n'est pas diagonalisable .

(d) Soit F un sous-espace vectoriel de Ker(Tr). Soit $M \in F$. Alors

$$g(M) = M + tr(M).J = M \in F$$

donc F est stable par q.

(e) Soit G un sous-espace vectoriel de $\mathfrak{M}_n(\mathbb{R})$ tel que $J \in G$. Soit $M \in G$. Alors

$$g(M) = M + tr(M).J \in G$$

car $M \in G$, $J \in G$ et G est stable par combinaison linéaire (c'est un sev).

(f) Comme tr(J) = 0, on a $Vect(J) \subset \ker(tr)$. Comme $\dim(\ker(tr)) = n^2 - 1 > 1$ (car n > 2), il existe bien une matrice B de trace nulle telle que $B \notin Vect(J)$. Soit H = Vect(I, B). Montrons tout d'abord que la famille (I, B) est libre. Soit $(\alpha, \beta) \in \mathbb{R}^2$ tels que $\alpha.I + \beta.B = 0$. Alors, par linéarité de la trace,

$$\operatorname{tr}(\alpha.I + \beta.B) = 0 \Leftrightarrow \alpha.\operatorname{tr}(I) + \beta.\operatorname{tr}(B) = 0 \Leftrightarrow \alpha.n = 0 \Leftrightarrow \alpha = 0$$

d'où $\beta.B = 0$. Comme $B \neq 0$, $\beta = 0$.

Ainsi la famille (I, B) est libre, il s'agit donc d'une base de H et H est bien un plan vectoriel.

On raisonne par l'absurde pour montrer que $J \notin H$.

Supposons que $J \in H$. Alors il existe $(\alpha, \beta) \in \mathbb{R}^2$ tels que $J = \alpha I + \beta B$. D'où $tr(J) = \alpha.n$. Comme J est de trace nulle, $\alpha = 0$. D'où $\beta.B = J$. Mais comme $B \notin Vect(J)$, on a forcément $\beta = 0$. Absurde car J n'est pas nulle. Ainsi $J \notin H$.

On raisonne par l'absurde pour montrer que H n'est pas stable par q. Supposons que H est stable par q. Comme $I \in H$, on a $q(I) \in H$. Or

$$g(I) = I + n.J \Leftrightarrow J = \frac{1}{n}.g(I) - \frac{1}{n}.I \in H$$

ce qui est absurde car $J \notin H$. Ainsi H n'est pas stable par g.

Bilan: H est un plan vectoriel ne contenant pas A, et H n'est pas stable par q