Corrigé du DM n° 4 - pour le mardi 14 octobre 2025

Devoir en auto-correction. Le corrigé sera posté le mardi 14/10.

Révisez en détail votre cours sur la réduction; reprenez les exercices vus en TD. Ensuite, cherchez l'ex. 1 en 2h maximum

Exercice 1 : spectre de AB et spectre de BA

Exercice issu du sujet Ecricome 2023 : cf corrigé manuscrit.

Exercice 2 : exercice 10 du TD "Intégrales Impropres"

Une suite d'intégrales impropres

Pour tout n de \mathbb{N}^* , on note $f_n: x \mapsto \frac{1}{(1+x^2)^n}$ et $I_n = \int_{-\infty}^{+\infty} f_n(x) \ dx$

1. La fonction f_n étant continue sur \mathbb{R} , l'intégrale I_n est impropre en $-\infty$ et en $+\infty$. De plus, comme f_n est une fonction paire, l'intégrale I_n converge ssi l'intégrale I'_n $\int_0^{+\infty} f_n(x) dx$ est convergente.

 $\frac{1}{(1+x^2)^n} \sim_{n\to+\infty} \frac{1}{x^{2n}}$. Comme $n\geq 1, 2n>1$, l'intégrale $\int_1^{+\infty} \frac{1}{x^{2n}} dx$ est une intégrale de Riemann convergente. Par critère d'équivalence, l'intégrale $\int_1^{+\infty} \frac{1}{(1+x^2)^n} dx$ est convergente. Comme $\int_0^1 \frac{1}{(1+x^2)^n} dx$ est bien définie, l'intégrale I' converge donc I_n aussi.

Soit A > 0.

$$I'_{1,A} = \int_0^A \frac{1}{1+x^2} dx = Arctan(A) - Arctan(0) = Arctan(A) \rightarrow_{A \rightarrow +\infty} \frac{\pi}{2}$$

d'où $I_1 = 2I'_1 = \pi$ (par parité de f_1).

Bilan: pour tout $n \in \mathbb{N}^*$, l'intégrale I_n est convergente et $I_1 = \pi$

- 2. Soit $n \in \mathbb{N}^*$. Pour tout $x \in \mathbb{R}$, $\frac{1}{(1+x^2)} \in [0,1]$, donc $\frac{1}{(1+x^2)^{n+1}} \le \frac{1}{(1+x^2)^n}$. D'où en intégrant, les bornes étant dans le bon sens et les intégrales convergentes, $I_{n+1} \le I_n$. La suite $(I_n)_{n\in\mathbb{N}^*}$ est donc décroissante.
 - De plus, pour tout $x \in \mathbb{R}$, pour tout $n \in \mathbb{N}$, $\frac{1}{(1+x^2)^n} \geq 0$ d'où par positivité de l'intégrale (bornes bon sens), $I_n \geq 0$. Etant décroissante et minorée par 0, la suite $(I_n)_{n\in\mathbb{N}^*}$ est convergente.
- 3. Soit $n \in \mathbb{N}$, A > 0 et $I'_{n,A} = \int_0^A \frac{1}{(1+x^2)^n} dx$. Posons

$$\left\{ \begin{array}{l} u(x) = \frac{1}{(1+x^2)^n} = (1+x^2)^{-n} \\ v'(x) = 1 \end{array} \right. \rightarrow \left\{ \begin{array}{l} u'(x) = -2nx.(1+x^2)^{-n-1} = -\frac{2nx}{(1+x^2)^{n+1}} \\ v(x) = x \end{array} \right.$$

Les fonctions u et v sont de classe \mathcal{C}^1 sur [0, A]. Par IPP,

$$I'_{n,A} = \left[\frac{x}{(1+x^2)^n}\right]_0^A + 2n \cdot \int_0^A \frac{x^2}{(1+x^2)^{n+1}}$$

$$= \frac{A}{(1+A^2)^n} + 2n \cdot \int_0^A \frac{x^2}{(1+x^2)^{n+1}}$$

$$= \frac{A}{(1+A^2)^n} + 2n \cdot \int_0^A \frac{1+x^2-1}{(1+x^2)^{n+1}} \text{ encore et toujours !!}$$

$$= \frac{A}{(1+A^2)^n} + 2n \cdot I'_{n,A} - 2n \cdot I'_{n+1,A}$$

En passant à la limite quand A tend vers $+\infty$,:

$$I'_{n} = 2n.I'_{n} - 2n.I'_{n+1} \Leftrightarrow I'_{n+1} = \frac{2n-1}{2n}.I'_{n}$$

D'où en multipliant par 2 les deux membres, par parité : $I_{n+1} = \frac{2n-1}{2n} I_n$

Bilan:
$$\forall n \in \mathbb{N}^*, I_{n+1} = \frac{2n-1}{2n}.I_n$$

4. On a donc $I_n = \frac{2n-3}{2n-2} I_{n-1}$, puis

$$I_n = \frac{2n-3}{2n-2} \cdot \frac{2n-5}{2n-4} \cdot I_{n-2}$$

$$I_n = \frac{2n-3}{2n-2} \cdot \frac{2n-5}{2n-4} \cdot \cdots \cdot \frac{1}{2} \cdot I_1$$

puis

$$\frac{2n-3}{2n-2} \cdot \frac{2n-5}{2n-4} \cdot \dots \cdot \frac{1}{2} = \frac{(2n-2)(2n-3)(2n-4)(2n-5)\dots 1}{(2n-2)^2 \cdot (2n-4)^2 \cdot \dots \cdot 2^2}$$

$$= \frac{(2n-2)!}{4 \cdot (n-1)^2 \cdot 4 \cdot (n-2)^2 \cdot \dots \cdot 4 \cdot 1^2}$$

$$= \frac{(2n-2)!}{4^{n-1} \cdot ((n-1)!)^2}$$

D'où enfin

$$\underline{\text{Bilan : }} \left | \forall n \in \mathbb{N}^*, \, I_n = \frac{(2n-2)!}{4^{n-1}.((n-1)!)^2}.\pi \right |$$