ECG2 - Lycée Saint Just Mathématiques Approfondies 2025/26 Programme de colle - **Semaine 6** du 10 au 14 novembre 2025

${\tt Informatique: programmation en langage Python}$

Révision des instructions sur les matrices : définition d'une matrice, matrices usuelles, opérations usuelles sur les matrices.

Calcul d'une somme ou d'un produit : par boucle for ou en utilisant les matrices du type np.arange(1,n+1,1) et les instructions np.sum, np.prod. Tracé d'une courbe en Python, calcul des termes d'une suite. Définition d'une fonction en Python.

Chapitre 4. Intégrales impropres (tout)

I. Nature et valeur d'une intégrale impropre

- Définition. Intégrale impropre à gauche, à droite. Lien avec l'aire sous la courbe dans le cas des fonctions positives.
- Intégrale doublement impropre : on coupe l'intégrale en deux.
- Intégrale multiplement impropre : on coupe en autant de morceaux que nécessaire.
- \bullet Intégrale faussement impropre : attention uniquement pour des intégrales impropres en un réel b
- Intégrale grossièrement divergente en $+\infty$ (ou en $-\infty$) : si $\lim_{x\to +\infty} f(x) = \pm \infty$, ou bien $\lim_{x\to +\infty} f(x) = l \neq 0$ alors l'intégrale $\int_0^{+\infty} f(x) \ dx$ est (grossièrement) divergente.

Attention si $\lim_{x\to+\infty} f(x) = 0$ on ne peut rien en déduire sur la nature de $\int_0^{+\infty} f(x) dx$. Si f n'a pas de limite en $+\infty$ on ne peut rien en déduire non plus.

- Intégrale des fonctions continues par morceaux.
- Reste d'une intégrale impropre convergente.

II. Intégrales usuelles

- Soit $a \in \mathbb{R}$. L'intégrale $\int_0^{+\infty} e^{-\alpha t} dt$ converge si et seulement si $\alpha > 0$ (*). Dans le cas où $\alpha > 0$, $\int_0^{+\infty} e^{-\alpha t} dt = \frac{1}{\alpha}$ (*)
- $\bullet\,$ Intégrales de Riemann "simples" :

L'intégrale $\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt$ converge si et seulement si $\alpha > 1$. L'intégrale $\int_{1}^{1} \frac{1}{t^{\alpha}} dt$ converge si et seulement si $\alpha < 1$.

Valeurs des intégrales HP: à savoir recalculer si nécessaire

• Intégrales de Riemann "simples" (variante) Soit $\alpha \in \mathbb{R}$ et c un réel strictement positif.

L'intégrale $\int_{c}^{+\infty} \frac{1}{t^{\alpha}} dt$ converge si et seulement si $\alpha > 1$. L'intégrale $\int_{0}^{c} \frac{1}{t^{\alpha}} dt$ converge si et seulement si $\alpha < 1$.

• Intégrale de Riemann impropre en un réel : cas général. Soit a et b deux réels, a < b. Soit $\alpha \in \mathbb{R}$.

L'intégrale $\int_a^b \frac{1}{(b-t)^{\alpha}} dt$ converge si et seulement si $\alpha < 1$. L'intégrale $\int_a^b \frac{1}{(t-a)^{\alpha}} dt$ converge si et seulement si $\alpha < 1$.

• Intégrale de Gauss :

 $\int_{-\infty}^{+\infty} e^{-\frac{t^2}{2} dt} \text{ existe et } \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt = \sqrt{2 \pi}$ ADMIS. Valeur à connaître par coeur.

Exercice à savoir refaire :

Montrer que l'intégrale $\int_0^1 \ln(t)dt$ converge et la calculer.

HP mais sert souvent !! Connaître la primitive de la fonction ln

III. Propriétés et méthodes de calcul

- Permutation des bornes.
- Linéarité (si intégrales convergentes!).
- Relation de Chasles (si intégrales convergentes!)
- Positivité, croissance, stricte positivité (idem). Fonction continue positive d'intégrale nulle.

IV. Techniques de calcul

Que deux techniques classiques : être réactif lors des exercices !!

- Intégration par parties : sur bornes propres uniquement. Commencer par fixer des bornes.
- Changement de variables. On peut faire le changement sur bornes impropres. Ne pas oublier les hypothèses : la fonction φ est de \mathcal{C}^1 et strictement monotones sur ... donc bijective de ... sur Conclusion : les deux intégrales sont de même nature. En cas de convergence elles sont égales.
- Fonctions paires et impaires.

V. Critères de convergence pour les fonctions positives

Critères de majoration, d'équivalence, de négligeabilité pour les fonctions positives (fonctions négatives marche aussi).

VI. Convergence absolue

Définition et théorème.

VII. La fonction Gamma

Cette fonction est au programme, les résultats doivent être connus.

La fonction Gamma, notée Γ , est la fonction définie sur $]0; +\infty[$ par

$$\forall x \in]0, +\infty[, \quad \Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

- Pour tout x > 0, l'intégrale $\Gamma(x)$ est bien convergente (*).
- $\Gamma(1) = 1$ et pour tout x > 0, $\Gamma(x) > 0$ (*).
- Pour tout x > 0, $\Gamma(x+1) = x \cdot \Gamma(x)$ (*).
- Pour tout $n \in \mathbb{N}$, $\Gamma(n+1) = n!$ (*)

Avoir le réflexe de reconnaître / se ramener à Γ en exercice

Exercice à savoir refaire :

- 1. A l'aide du changement de variables $t=u^2/2$, montrer que $\Gamma(\frac{1}{2})=\sqrt{\pi}$. HP classique
- 2. Montrer que pour tout $n \in \mathbb{N}$,

$$\Gamma(n + \frac{1}{2}) = \frac{(2n)! \sqrt{\pi}}{4^n n!}$$

Bien décortiquer ces calculs classiques

Chapitre 5. Révisions de probabilités

Révisions de 1ère année. Pas encore de variables aléatoires.

Révision <u>autonome</u> des formules et méthodes sur les suites usuelles : suites arithmétiques, suites géométriques, suites arithmético-géométriques, suites récurrentes linéaires d'ordre 2.

- Espace probabilisable.
- Système complet d'événements.
- Définition d'une probabilité. Propriétés, formule du crible $P(A \cup B \cup C)$ (trois événements uniquement). Evénement négligeable, événement réalisé presque sûrement.
- Exercice à savoir refaire : inégalité de Boole : montrer que quels que soient les événements $E_1, ..., E_n$,

$$P\left(\bigcup_{i=1}^{n} E_i\right) \leqslant \sum_{i=1}^{n} P(E_i).$$

- Propriétés de limite monotone en probabilités : pour des familles croissantes/décroissantes d'événements, dans le cas général.
- Probabilité conditionnelle.
- Les deux formules principales : formule des probabilités composées, formule des probabilités totales : ENONCES PRECIS!!
- \bullet Indépendance de deux événements, de n événements.

(*): preuve exigible