Exercices - Intégrales impropres - Corrigés des exercices 7-8-10

Exercice 7:

On définit pour x > 0, $f(x) = \int_{1}^{+\infty} \frac{e^{-xt}}{1+t^2} dt$ Tout le début de l'exercice est hyper-classique. La dernière question est difficile et l'énoncé non détaillé.

1. Soit $x \in]0; +\infty[$. La fonction $g_x: t \mapsto \frac{e^{-xt}}{1+t^2}$ est continue sur $[1; +\infty[$, donc l'intégrale $\int_1^{+\infty} \frac{e^{-xt}}{1+t^2} dt$ est impropre en $+\infty$ uniquement. De plus, pour tout $t \ge 1$, $-xt \le 0$ donc $e^{-xt} \le 1$, et ainsi $\frac{e^{-xt}}{1+t^2} \le \frac{1}{t^2}$. Comme l'intégrale $\int_1^{+\infty} \frac{1}{t^2} dt$ converge (Riemann, $\alpha = 2 > 1$), par critère de majoration (fonctions positives), l'intégrale $\int_1^{+\infty} \frac{e^{-xt}}{1+t^2} dt$ converge.

Bilan : f est bien définie sur $]0; +\infty[$

2. Soit $(x,y) \in]0; +\infty[^2 \text{ avec } x \leq y. \text{ Alors pour tout } t \geq 1,$

$$\begin{aligned} -xt \ge -yt & \Rightarrow & e^{-xt} \ge e^{-yt} \\ & \Rightarrow & \frac{e^{-xt}}{1+t^2} \ge \frac{e^{-yt}}{1+t^2} \end{aligned}$$

D'où en intégrant, les bornes étant dans le bon sens et les intégrales convergentes, $f(x) \ge f(y)$.

Bilan:
$$f$$
 est décroissante sur $]0, +\infty[$

3. D'une part, pour tout x > 0, pour tout $t \ge 1$, on a $\frac{e^{-xt}}{1+t^2} \ge 0$ d'où en intégrant (bornes bon sens), $f(x) \ge 0$. D'autre part, pour tout x>0, pour tout $t\geq 1$, $\frac{e^{-xt}}{1+t^2}\leq e^{-xt}$ d'où en intégrant

$$f(x) \le \int_1^{+\infty} e^{-xt} dt \le \int_0^{+\infty} e^{-xt} dx = \frac{1}{x}$$

Ainsi, $0 \le f(x) \le \frac{1}{x}$. Comme $\lim_{x \to +\infty} \frac{1}{x} = 0$, par encadrement $\lim_{x \to +\infty} f(x) = 0$.

$$\underline{\text{Bilan : }} \boxed{\lim_{x \to +\infty} f(x) = 0}$$

4. Soit $(x, x_0) \in]0; +\infty[^2]$. Alors

$$|f(x) - f(x_0)| = |\int_1^{+\infty} \frac{e^{-xt} - e^{-x_0 \cdot t}}{1 + t^2} dt| \text{ par linéarité de l'intégrale}$$

$$\leq \int_1^{+\infty} \frac{|e^{-xt} - e^{-x_0 \cdot t}|}{1 + t^2} dt \text{ par inégalité triangulaire}$$

$$\leq \int_1^{+\infty} |e^{-xt} - e^{-x_0 t}| dt$$

Supposons $x \le x_0$. Alors pour tout $t \ge 1$, $e^{-xt} \ge e^{-x_0t}$, donc $e^{-xt} - e^{-x_0t} \ge 0$. De plus, si A > 1,

$$\int_{1}^{A} e^{-xt} - e^{-x_{0}t} dt = \left[-\frac{1}{x} e^{-xt} + \frac{1}{x_{0}} e^{-x_{0}t} \right]_{1}^{A}$$

$$= \frac{1}{x} e^{-x} - \frac{1}{x_{0}} e^{-x_{0}} - \frac{1}{x} e^{-Ax} + \frac{1}{x_{0}} e^{-Ax_{0}}$$

$$\to_{A \to +\infty} \frac{1}{x} e^{-x} - \frac{1}{x_{0}} e^{-x_{0}}$$

Donc dans ce cas $|f(x)-f(x_0)| \leq \frac{1}{x}e^{-x} - \frac{1}{x_0}e^{-x_0}$. De même si $x_0 \leq x$, on trouve que $|f(x)-f(x_0)| \leq \frac{1}{x_0}e^{-x_0} - \frac{1}{x}e^{-x}$. On trouve dans tous les cas que

$$|f(x) - f(x_0)| \le \left| \frac{1}{x} e^{-x} - \frac{1}{x_0} e^{-x_0} \right|$$

ECG2 - Maths Appro - Année 2025-2026

Comme $\lim_{x\to x_0} \left| \frac{1}{x} e^{-x} - \frac{1}{x_0} e^{-x_0} \right| = 0$, on en déduit par encadrement que $\lim_{x\to x_0} f(x) = f(x_0)$: f est continue

Bilan: f est continue sur \mathbb{R}_{+}^{*}

Exercice 8:

Une série et une suite

1. La fonction $g: t \mapsto \frac{\ln^2(t)}{1+t^2}$ est continue sur]0,1], l'intégrale I est donc impropre en 0.

$$\frac{\frac{\ln^2(t)}{1+t^2}}{1/\sqrt{t}} = \frac{\sqrt{t} \cdot \ln^2(t)}{1+t^2} \sim_{t\to 0} \sqrt{t} \cdot \ln^2(t) \to_{t\to 0} 0 \text{ par CC}$$

Donc $g(t) = o_{t\to 0}(\frac{1}{\sqrt{t}})$. Comme $\int_0^1 \frac{1}{\sqrt{t}} dt$ est convergente (Riemann en $0, \alpha = 1/2 < 1$), par critère de négligeabilité (fonctions positives), l'intégrale I est convergente.

2. On considère, pour $n \in \mathbb{N}$: $u_n = \int_0^1 t^{2n} \ln^2(t) dt$. Soit $\epsilon \in]0,1[$ et $u_n^{\epsilon} = \int_{\epsilon}^1 t^{2n} \ln^2(t) dt$ Posons

$$\begin{cases} u(t) = \ln^2(t) \\ v'(t) = t^{2n} \end{cases} \to \begin{cases} u'(t) = 2 \cdot \ln(t) \cdot \frac{1}{t} \\ v(t) = \frac{t^{2n+1}}{2n+1} \end{cases}$$

Les fonctions u et v sont de classe C^1 sur $[\epsilon, 1]$. Par IPP.

$$u_n^{\epsilon} = [\ln^2(t).\frac{t^{2n+1}}{2n+1}]_{\epsilon}^1 - \frac{2}{2n+1}.\int_{\epsilon}^1 \ln(t).t^{2n}dt$$
$$= -\ln^2(\epsilon).\frac{\epsilon^{2n+1}}{2n+1} - \frac{2}{2n+1}.v_n^{\epsilon}$$

où $v_n^{\epsilon} = \int_{-1}^{1} \ln(t) . t^{2n} dt$. Posons

$$\begin{cases} u(t) = \ln(t) \\ v'(t) = t^{2n} \end{cases} \to \begin{cases} u'(t) = \frac{1}{t} \\ v(t) = \frac{t^{2n+1}}{2n+1} \end{cases}$$

Les fonctions u et v sont de classe C^1 sur $[\epsilon, 1]$. Par IP

$$\begin{array}{ll} v_n^{\epsilon} & = & [\ln(t).\frac{t^{2n+1}}{2n+1}]_{\epsilon}^1 - \frac{1}{2n+1}.\int_{\epsilon}^1 t^{2n}dt \\ \\ & = & -\ln(\epsilon).\frac{\epsilon^{2n+1}}{2n+1} - \frac{1}{2n+1}.(\frac{1}{2n+1} - \frac{\epsilon^{2n+1}}{2n+1}) \end{array}$$

D'où

$$u_n^\epsilon = -\ln^2(\epsilon).\frac{\epsilon^{2n+1}}{2n+1} - 2\ln(\epsilon).\frac{\epsilon^{2n+1}}{(2n+1)^2} + \frac{2}{(2n+1)^3} - 2.\frac{\epsilon^{2n+1}}{(2n+1)^2}$$

et donc enfin, en faisant tendre ϵ vers 0 et par CC : $\lim_{\epsilon \to 0} u_n^{\epsilon} = \frac{2}{(2n+1)^3}$, ce qui montre que l'intégrale définissant u_n est convergente et que $u_n = \frac{2}{(2n+1)^3}$

$$\underline{\text{Bilan : }} u_n = \frac{2}{(2n+1)^3}$$

3. Pour tout $t \in [0; 1]$:

$$1 - t^{2} + t^{4} - \ldots + (-1)^{n} t^{2n} = \sum_{k=0}^{n} (-t^{2})^{k}$$
$$= \frac{1 - (-t^{2})^{n+1}}{1 + t^{2}}$$

et on en déduit aisément que

$$\frac{1}{1+t^2} = 1 - t^2 + t^4 - \ldots + (-1)^n t^{2n} + \frac{(-1)^{n+1} t^{2n+2}}{1+t^2}$$

4. On multiplie par $\ln^2(t)$ la relation précédente :

$$\frac{\ln(t)}{1+t^2} = \sum_{k=0}^{n} (-1)^k \cdot \ln^2(t) \cdot t^{2k} + \frac{(-1)^{n+1} t^{2n+2} \cdot \ln^2(t)}{1+t^2}$$

En intégrant entre 0 et 1, on obtient alors que

$$I = \sum_{0}^{n} (-1)^{k} \cdot u_{k} + (-1)^{n+1} \cdot \int_{0}^{1} \frac{t^{2n+2} \cdot \ln^{2}(t)}{1+t^{2}} dt$$

Notons que cette dernière intégrale est faussement impropre en 0 donc convergente. De plus,

$$|(-1)^{n+1} \cdot \int_0^1 \frac{t^{2n+2} \cdot \ln^2(t)}{1+t^2} dt| = \int_0^1 \frac{t^{2n+2} \cdot \ln^2(t)}{1+t^2} dt$$

$$\leq \int_0^1 t^{2n+2} \cdot \ln^2(t) dt$$

$$\leq u_{n+1} = \frac{2}{(2n+3)^3}$$

D'où $\lim_{n \to +\infty} (-1)^{n+1} \cdot \int_0^1 \frac{t^{2n+2} \cdot \ln^2(t)}{1+t^2} dt = 0$ par encadrement. On en déduit que $\lim_{n \to +\infty} \sum_0^n (-1)^k \cdot \frac{2}{(2k+1)^3} = I$

$$\underline{\text{Bilan :}} \boxed{\text{la série } \sum_{n\geqslant 0} \frac{(-1)^n}{(2n+1)^3} \text{ est convergente et } \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^3} = \frac{I}{2}}$$

Exercice 10:

Une suite d'intégrales impropres

Pour tout n de \mathbb{N}^* , on note $f_n: x \mapsto \frac{1}{(1+x^2)^n}$ et $I_n = \int_{-\infty}^{+\infty} f_n(x) \ dx$

1. La fonction f_n étant continue sur \mathbb{R} , l'intégrale I_n est impropre en $-\infty$ et en $+\infty$. De plus, comme f_n est une fonction paire, l'intégrale I_n converge ssi l'intégrale $I'_n = \int_0^{+\infty} f_n(x) \, dx$ est convergente. $\frac{1}{(1+x^2)^n} \sim_{n\to+\infty} \frac{1}{x^2}$. Comme $n\geq 1, 2n>1$, l'intégrale $\int_1^{+\infty} \frac{1}{x^2} dx$ est une intégrale de Riemann convergente. Par critère d'équivalence, l'intégrale $\int_1^{+\infty} \frac{1}{(1+x^2)^n} dx$ est convergente. Comme $\int_0^1 \frac{1}{(1+x^2)^n} dx$ est bien définie, l'intégrale I' converge donc I_n aussi. Soit A>0.

$$I'_{1,A} = \int_0^A \frac{1}{1+x^2} dx = Arctan(A) - Arctan(0) = Arctan(A) \rightarrow_{A \rightarrow +\infty} \frac{\pi}{2}$$

d'où $I_1 = 2I'_1 = \pi$ (par parité de f_1).

<u>Bilan</u>: pour tout $n \in \mathbb{N}^*$, l'intégrale I_n est convergente et $I_1 = \pi$

- 2. Soit $n \in \mathbb{N}^*$. Pour tout $x \in \mathbb{R}$, $\frac{1}{(1+x^2)} \in [0,1]$, donc $\frac{1}{(1+x^2)^{n+1}} \le \frac{1}{(1+x^2)^n}$. D'où en intégrant, les bornes étant dans le bon sens et les intégrales convergentes, $I_{n+1} \le I_n$. La suite $(I_n)_{n \in \mathbb{N}^*}$ est donc décroissante. De plus, pour tout $x \in \mathbb{R}$, pour tout $n \in \mathbb{N}$, $\frac{1}{(1+x^2)^n} \ge 0$ d'où par positivité de l'intégrale (bornes bon sens), $I_n \ge 0$. Etant décroissante et minorée par 0, la suite $(I_n)_{n \in \mathbb{N}^*}$ est convergente.
- 3. Soit $n \in \mathbb{N}$, A > 0 et $I'_{n,A} = \int_0^A \frac{1}{(1+x^2)^n} dx$. Posons

$$\left\{ \begin{array}{l} u(x) = \frac{1}{(1+x^2)^n} = (1+x^2)^{-n} \\ v'(x) = 1 \end{array} \right. \rightarrow \left\{ \begin{array}{l} u'(x) = -2nx.(1+x^2)^{-n-1} = -\frac{2nx}{(1+x^2)^{n+1}} \\ v(x) = x \end{array} \right.$$

3

Les fonctions u et v sont de classe C^1 sur [0, A]. Par IPP,

$$\begin{split} I'_{n,A} &= \left[\frac{x}{(1+x^2)^n}\right]_0^A + 2n. \int_0^A \frac{x^2}{(1+x^2)^{n+1}} \\ &= \frac{A}{(1+A^2)^n} + 2n. \int_0^A \frac{x^2}{(1+x^2)^{n+1}} \\ &= \frac{A}{(1+A^2)^n} + 2n. \int_0^A \frac{1+x^2-1}{(1+x^2)^{n+1}} \text{ encore et toujours } !! \\ &= \frac{A}{(1+A^2)^n} + 2n. I'_{n,A} - 2n. I'_{n+1,A} \end{split}$$

En passant à la limite quand A tend vers $+\infty$,:

$$I'_{n} = 2n.I'_{n} - 2n.I'_{n+1} \Leftrightarrow I'_{n+1} = \frac{2n-1}{2n}.I'_{n}$$

D'où en multipliant par 2 les deux membres, par parité : $I_{n+1} = \frac{2n-1}{2n} I_n$.

Bilan:
$$\forall n \in \mathbb{N}^*, I_{n+1} = \frac{2n-1}{2n}.I_n$$

4. On a donc $I_n = \frac{2n-3}{2n-2} I_{n-1}$, puis

$$I_n = \frac{2n-3}{2n-2} \cdot \frac{2n-5}{2n-4} \cdot I_{n-2}$$

$$I_n = \frac{2n-3}{2n-2} \cdot \frac{2n-5}{2n-4} \cdot \dots \cdot \frac{1}{2} \cdot I_1$$

puis

$$\frac{2n-3}{2n-2} \cdot \frac{2n-5}{2n-4} \cdot \dots \cdot \frac{1}{2} = \frac{(2n-2)(2n-3)(2n-4)(2n-5) \dots 1}{(2n-2)^2 \cdot (2n-4)^2 \cdot \dots \cdot 2^2}$$

$$= \frac{(2n-2)!}{4 \cdot (n-1)^2 \cdot 4 \cdot (n-2)^2 \cdot \dots \cdot 4 \cdot 1^2}$$

$$= \frac{(2n-2)!}{4^{n-1} \cdot ((n-1)!)^2}$$

D'où enfin

$$\underline{\text{Bilan:}} \boxed{\forall n \in \mathbb{N}^*, \, I_n = \frac{(2n-2)!}{4^{n-1}.((n-1)!)^2}.\pi}$$