EDHEC 2025 Mathématiques approfondies

Proposition de corrigé

Exercice 1.

1. (a) La fonction g est dérivable sur \mathbb{R}_+^* et :

$$\forall x > 0, \ g'(x) = \frac{1 - \ln(x)}{r^2}$$

La fonction g' est strictement positive sur]0, e[et strictement négative sur $]e, +\infty[$. On en déduit que g est strictement croissante sur]0, e[et strictement décroissante sur $[e, +\infty[$. De plus, on a (par simple quotient) :

$$\lim_{x \to 0^+} g(x) = -\infty,$$

 $g(e) = e^{-1}$ et par croissances comparées :

$$\lim_{x \to +\infty} g(x) = 0$$

(b) On sait que e < 3 donc par stricte décroissance de g sur $[e, +\infty[$:

$$\forall k \ge 3, \ g(k+1) \le g(k)$$

ou encore:

$$\forall k \ge 3, \frac{\ln(k+1)}{k+1} \le \frac{\ln(k)}{k}$$

ce qui prouve que la suite étudiée est décroissante.

Soit $k \geq 4$. D'après ce que l'on vient de montrer, on a :

$$\frac{\ln(k)}{k} \le \frac{\ln(4)}{4} = \frac{\ln(2^2)}{4} = \frac{2\ln(2)}{4} = \frac{\ln(2)}{2}$$

2. (a) La fonction $x \mapsto x - n$ est dérivable sur $]n, +\infty[$ et à valeurs dans \mathbb{R}_+^* et la fonction ln est dérivable sur \mathbb{R}_+^* donc par composition, la fonction $x \mapsto \ln(x - n)$ est dérivable sur $]n, +\infty[$. Par opérations usuelles, on en déduit alors que f_n est dérivable sur $]n, +\infty[$.

Soit x un réel tel que x > n. On a :

$$f'_n(x) = \ln(x) + (x - n) \times \frac{1}{x} - \ln(x - n) - x \times \frac{1}{x - n}$$
$$= \ln\left(\frac{x}{x - n}\right) + \frac{x - n}{x} - \frac{x}{x - n}$$

(b) Soit h la fonction définie par :

$$\forall t > 0, \ h(t) = \ln(t) - t + 1$$

La fonction h est dérivable sur \mathbb{R}_+^* et on a :

$$\forall t > 0, \ h'(t) = \frac{1}{t} - 1 = \frac{1 - t}{t}$$

On en déduit alors facilement que h est croissante sur]0,1] et décroissante sur $[1,+\infty[$. En particulier, on a :

$$\forall t > 0, \ h(t) < h(1) = 0$$

ce qui donne le résultat souhaité. On peut aussi invoquer un argument de convexité.

Soit x un réel tel que x > n. On a :

$$f'_n(x) = \ln\left(\frac{x}{x-n}\right) + \frac{x-n}{x} - \frac{x}{x-n}$$

donc d'après la question précédente :

$$f'_n(x) \le \frac{x}{x-n} - 1 + \frac{x-n}{x} - \frac{x}{x-n}$$

donc:

$$f'_n(x) \le -1 + \frac{x-n}{x} = \frac{-n}{x} < 0$$

On en déduit que f_n est strictement décroissante sur $]n, +\infty[$.

(c) Soit n un entier naturel supérieur ou égal à deux. On a :

$$f_n(n+2) = 2\ln(n+2) - (n+2)\ln(2)$$

L'entier n+2 est supérieur ou égal à 4 donc d'après une question précédente, on a :

$$\frac{\ln(n+2)}{n+2} \le \frac{\ln(2)}{2}$$

ce qui donne (par positivité de 2 et n+2) :

$$2\ln(n+2) - (n+2)\ln(2) \le 0$$

Ainsi, $f_n(n+2)$ est négatif.

On sait que la fonction f_n est continue et strictement décroissante sur [n+1, n+2]. D'après la question précédente, $f_n(n+2)$ est négatif et :

$$f_n(n+1) = \ln(n+1) \ge 0$$

car $n+1 \ge 1$. D'après le théorème des valeurs intermédiaires, il existe un unique réel $x_n \in [n+1, n+2]$ tel que $f_n(x_n) = 0$.

3. Soit n un entier naturel supérieur ou égal à deux. On a :

$$n+1 \le x_n \le n+2$$

et par stricte positivité de n:

$$1 + \frac{1}{n} \le \frac{x_n}{n} \le 1 + \frac{2}{n}$$

On conclut alors facilement par théorème d'encadrement :

$$x_n \underset{+\infty}{\sim} n$$

4. (a) Soit n un entier naturel supérieur ou égal deux. On sait que $f_n(x_n)=0$ donc :

$$(x_n - n)\ln(x_n) - x_n\ln(x_n - n) = 0$$

Sachant que x_n est non nul (car supérieur ou égal à n+1), en isolant $\ln(x_n-n)$ on obtient bien :

$$\ln(x_n - n) = (x_n - n) \frac{\ln(x_n)}{x_n}$$

(b) On sait que $x_n \sim n$ donc x_n tend vers $+\infty$ quand n tend vers $+\infty$. Par croissances comparées, on en déduit que :

$$\lim_{n \to +\infty} \frac{\ln(x_n)}{x_n} = 0$$

Soit n un entier naturel supérieur ou égal à deux. On a :

$$n+1 \le x_n \le n+2$$

donc:

$$1 \le x_n - n \le 2$$

On sait que x_n est supérieur ou égal à 1 donc $\frac{\ln(x_n)}{x_n}$ est positif donc :

$$\frac{\ln(x_n)}{x_n} \le (x_n - n) \frac{\ln(x_n)}{x_n} \le 2 \frac{\ln(x_n)}{x_n}$$

ou encore d'après une question précédente :

$$\frac{\ln(x_n)}{x_n} \le \ln(x_n - n) \le 2\frac{\ln(x_n)}{x_n}$$

D'après la question précédente et par théorème d'encadrement, on en déduit que :

$$\lim_{n \to +\infty} \ln(x_n - n) = 0$$

Par continuité de l'exponentielle en 0, on a finalement :

$$\lim_{n \to +\infty} (x_n - n) = 1$$

5. (a) On sait que:

$$\lim_{n \to +\infty} (x_n - n) = 1$$

donc $(u_n)_{n\geq 2}$ est convergente, de limite nulle. Or on sait que :

$$\ln(1+x) \sim x$$

donc:

$$\ln(1+u_n) \sim u_n$$

Soit n un entier naturel supérieur ou égal à deux. On a (n étant non nul) :

$$\ln(1+n+u_n) = \ln(n(\frac{1}{n}+1+\frac{u_n}{n})) = \ln(n) + \ln(\frac{1}{n}+1+\frac{u_n}{n})$$

donc $(\ln(n) \text{ étant non nul})$:

$$\frac{\ln(1+n+u_n)}{\ln(n)} = 1 + \frac{1}{\ln(n)} \times \ln(\frac{1}{n} + 1 + \frac{u_n}{n})$$

Or $(u_n)_{n\geq 2}$ converge vers 0 donc par opérations usuelles :

$$\lim_{n \to +\infty} \left(\frac{1}{n} + 1 + \frac{u_n}{n} \right) = 1$$

donc par continuité de ln en 1 :

$$\lim_{n \to +\infty} \ln(\frac{1}{n} + 1 + \frac{u_n}{n}) = 0$$

puis finalement par opérations usuelles:

$$\lim_{n \to +\infty} \frac{\ln(1+n+u_n)}{\ln(n)} = 1$$

On en déduit que :

$$\ln(1+n+u_n) \underset{+\infty}{\sim} \ln(n)$$

(b) Soit n un entier naturel supérieur ou égal deux. On a :

$$\ln(x_n - n) = (x_n - n) \frac{\ln(x_n)}{x_n}$$

donc sachant que $x_n = 1 + n + u_n$:

$$\ln(1+u_n) = (1+u_n)\frac{\ln(1+n+u_n)}{1+n+u_n}$$

On sait que $1 + u_n$ tend vers 1 quand n tend vers $+\infty$, $\ln(1 + n + u_n) \sim \ln(n)$ et $1 + n + u_n$ est équivalent à n quand n tend vers $+\infty$ (car u_n tend vers 0) donc :

$$(1+u_n)\frac{\ln(1+n+u_n)}{1+n+u_n} \underset{+\infty}{\sim} \frac{\ln(n)}{n}$$

donc:

$$\ln(1+u_n) \underset{+\infty}{\sim} \frac{\ln(n)}{n}$$

Or on a montré que $\ln(1+u_n) \underset{+\infty}{\sim} u_n$ donc :

$$u_n \underset{+\infty}{\sim} \frac{\ln(n)}{n}$$

6. Soit $n \geq 2$. Par croissance de la fonction logarithme sur \mathbb{R}_+^* , on a :

$$\frac{\ln(n)}{n} \ge \frac{\ln(2)}{n} \ge 0$$

La série harmonique diverge donc par critère de comparaison de séries à termes positifs, on en déduit que la série de terme général $\frac{\ln(n)}{n}$ diverge.

Soit n un entier supérieur ou égal à deux. On sait que $x_n \ge n+1$ donc $u_n \ge 0$. Par critère d'équivalences et d'après la question précédente, on en déduit que $\sum_{n\ge 2} u_n$ diverge.

D'après la question précédente, on a :

$$u_n^2 \underset{+\infty}{\sim} \frac{\ln(n)^2}{n^2}$$

et par croissances comparées :

$$\frac{\ln(n)^2}{n^2} \underset{+\infty}{=} o\left(\frac{1}{n^{3/2}}\right)$$

Les séries étudiées sont à termes positifs. Par critères de comparaison, et sachant que $\frac{3}{2} > 1$, on en déduit que $\sum_{n>2} (u_n)^2$ converge.

Exercice 2.

- 1. (a) Soit x un élément de F. Alors p(x) = x donc ||p(x)|| = ||x||, ce qui donne l'inclusion souhaitée.
 - (b) Soit $x \in E$. On écrit :

$$x = x - p(x) + p(x)$$

Par définition, $p(x) \in F$ et $x - p(x) \in F^{\perp}$. D'après le théorème de Pythagore, on en déduit que :

$$||x||^2 = ||x - p(x)||^2 + ||p(x)||^2$$

(c) On sait déjà que :

$$F \subset \{x \in E, \|p(x)\| = \|x\|\}$$

Montrons l'autre inclusion. Soit $x \in E$ tel que :

$$||p(x)|| = ||x||$$

Alors:

$$||p(x)||^2 = ||x||^2$$

donc d'après la question précédente :

$$||x - p(x)||^2 = 0$$

ce qui implique x - p(x) est nul donc p(x) = x, ce qui montre que x appartient à F. On a donc bien montré que :

$$F = \{x \in E, \|p(x)\| = \|x\|\}$$

Soit $x \in E$. D'après la question précédente, on a :

$$||x||^2 = ||x - p(x)||^2 + ||p(x)||^2 \ge ||p(x)||^2$$

car le réel $||x - p(x)||^2$ est positif. On a donc par croissance de la fonction racine carré sur \mathbb{R}_+ (la norme étant positive) :

$$||x|| \ge ||p(x)||$$

et c'est que l'on voulait montrer.

2. (a) Soit $x \in F_1 \cap F_2$. On a :

$$p_3(x) = p_1 \circ p_2(x) = p_1(p_2(x)) = p_1(x)$$

car x est dans F_2 . Sachant que x est aussi dans F_1 , on en déduit que :

$$p_3(x) = x$$

donc x est dans F_3 . Ainsi, on a démontré l'inclusion :

$$F_1 \cap F_2 \subset F_3$$

(b) Soit x un élément de F_3 . On a :

$$x = p_3(x) = p_1 \circ p_2(x) = p_1(p_2(x))$$

Ainsi:

$$||x|| = ||p_1(p_2(x))|| \le ||p_2(x)|| \le ||x||$$

d'après la question 1.(c) car p_1 et p_2 sont des projections orthogonales. Ainsi, $||x|| = ||p_2(x)||$ donc x appartient à F_2 , encore une fois d'après la question 1.(c).

On a aussi $x = p_1(p_2(x))$ donc x appartient à F_1 .

(c) On vient de montrer par double inclusion que :

$$F_1 \cap F_2 = F_3$$

(d) Soit $(x, y) \in E^2$. Sachant que p_3 est un projecteur orthogonal, on a d'après le rappel de cours que c'est un endomorphisme symétrique :

$$< p_3(x), y > = < x, p_3(y) >$$

Ainsi:

$$< p_1 \circ p_2(x), y > = < p_3(x), y > = < x, p_3(y) >$$

donc:

$$< p_1 \circ p_2(x), y > = < x, p_1 \circ p_2(y) >$$

Or p_1 est un projecteur orthogonal donc toujours d'après le rappel de cours :

$$< p_1 \circ p_2(x), y > = < p_1(x), p_2(y) >$$

et de même avec p_2 :

$$< p_1 \circ p_2(x), y > = < p_2(p_1(x)), y >$$

On conclut par symétrie :

$$\forall (x,y) \in E^2, < p_1 \circ p_2(x), y > = < p_2 \circ p_1(x), y >$$

(e) Soit $x \in E$. On a alors d'après ce que l'on vient de montrer (par bilinéarité) :

$$\forall y \in E, < p_1 \circ p_2(x) - p_2 \circ p_1(x), y >= 0$$

Le vecteur $p_1 \circ p_2(x) - p_2 \circ p_1(x)$ est donc orthogonal à tout vecteur donc en particulier à lui-même : il est donc nul par propriété du produit scalaire :

$$p_1 \circ p_2(x) - p_2 \circ p_1(x) = 0_E$$

Ceci est vrai pour tout vecteur x de E donc $p_1 \circ p_2 = p_2 \circ p_1$.

3. (a) L'application p est linéaire (par composition bien définie de deux applications linéaires). On a :

$$p^2 = (p_1 \circ p_2) \circ (p_1 \circ p_2) = p_1 \circ (p_2 \circ p_1) \circ p_2$$

Par hypothèse $p_1 \circ p_2 = p_2 \circ p_1$ donc :

$$p^2 = p_1 \circ (p_1 \circ p_2) \circ p_2 = p_1^2 \circ p_2^2 = p_1 \circ p_2$$

car p_1 et p_2 sont deux projecteurs. Ainsi, $p^2 = p$ donc p est un projecteur.

(b) Soit $(x, y) \in E^2$. On a:

$$< p(x), y > = < p_1 \circ p_2(x), y > = < p_2(x), p_1(y) >$$

car p_1 est un projecteur orthogonal donc symétrique d'après le rappel de cours. De même avec p_2 , on a :

$$< p(x), y > = < x, p_2(p_1(y)) > = < x, p_2 \circ p_1(y) >$$

Or $p_1 \circ p_2 = p_2 \circ p_1$ donc :

$$< p(x), y > = < x, p_1 \circ p_2(y) > = < x, p(y) >$$

Ainsi, p est un endomorphisme symétrique de E.

(c) L'application p est un projecteur et un endomorphisme symétrique donc c'est une projection orthogonale d'après le rappel de cours.

D'après la question 2.(c), c'est une projection orthogonale sur $F_1 \cap F_2$.

4. Soit p_1, p_2 deux projecteurs orthogonaux sur un espace euclidien E (respectivement sur F_1 et F_2). Alors $p_1 \circ p_2$ est un projecteur orthogonal de E si et seulement si $p_1 \circ p_2 = p_2 \circ p_1$. De plus, dans ce cas, $p_1 \circ p_2$ est une projection orthogonale sur $F_1 \cap F_2$.

Exercice 3.

1. Soit $x \in \mathbb{R}$. Si x est négatif, -x est positif donc on en déduit que f(x) est positif (l'exponentielle est positive). Si x est strictement positif, f(x) est nul donc positif. Ainsi, f est positive sur \mathbb{R} .

La fonction f est continue sur \mathbb{R}_{+}^{*} (produit une fonction polynomiale et d'une exponentielle composée avec une fonction polynomiale) et continue sur \mathbb{R}_{+}^{*} . Ainsi, f est continue sur \mathbb{R} sauf éventuellement en 0.

La fonction f est nulle sur \mathbb{R}_+^* donc son intégrale converge sur cet intervalle et :

$$\int_0^{+\infty} f(x) \, \mathrm{d}x = 0$$

Soit X < 0. On a :

$$\int_{X}^{0} f(x) dx = \int_{X}^{0} -2x \exp(-x^{2}) dx$$
$$= \left[e^{-x^{2}}\right]_{X}^{0}$$
$$= 1 - e^{-X^{2}}$$

On a:

$$\lim_{X \to +\infty} e^{-X^2} = 0$$

Ainsi, l'intégrale de f sur \mathbb{R}_- converge et :

$$\int_{-\infty}^{0} f(x) \, \mathrm{d}x = 1$$

Pour conclure, par définition de convergence, l'intégrale de f sur $\mathbb R$ converge et :

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1$$

- 2. Soit $x \in \mathbb{R}$. On utilise les calculs effectués précédemment.
 - Si x > 0, F(x) = 1.
 - Si x < 0, $F(x) = e^{-x^2}$.
- 3. Voici une densité :

$$\varphi: x \mapsto \frac{1}{\sqrt{\pi}} e^{-x^2}$$

4. La variable X admet une espérance si et seulement si l'intégrale suivante converge absolument :

$$\int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x$$

Or f est nulle sur \mathbb{R}_{+}^{*} , donc il suffit d'étudier la convergence absolue de :

$$\int_{-\infty}^{0} -2x^2 e^{-x^2} dx$$

donc la convergence de :

$$2\int_{-\infty}^{0} x^2 e^{-x^2} dx$$

Considérons une variable aléatoire N suivant la loi normale de paramètres m=0 et $\sigma^2=\frac{1}{2}$. Une de ses densités est donnée d'après la question précédente par :

$$\varphi: x \mapsto \frac{1}{\sqrt{\pi}} \exp(-x^2)$$

On sait que N admet une variance, égale à $\frac{1}{2}$, et $V(N) = E(N^2)$ (car l'espérance de N est nulle) donc l'intégrale suivante :

$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{\pi}} x^2 e^{-x^2} dx$$

converge absolument et vaut $\frac{1}{2}$. En particulier, par parité de l'intégrande, on a :

$$\int_{-\infty}^{0} \frac{1}{\sqrt{\pi}} x^2 e^{-x^2} dx = \frac{1}{4}$$

Cela prouve que X a bien une espérance et :

$$E(X) = -2 \int_{-\infty}^{0} x^2 e^{-x^2} dx = -2 \frac{\sqrt{\pi}}{4} = -\frac{\sqrt{\pi}}{2}$$

5. Soit $x \in \mathbb{R}$. Si x < 0, alors :

$$G(x) = P(X^2 \le x) = 0$$

Si $x \ge 0$, alors:

$$G(x) = P(-\sqrt{x} \le X \le \sqrt{x}) = F(\sqrt{x}) - F(-\sqrt{-x}) = 1 - F(-\sqrt{x})$$

car F est constante égale à 1 sur \mathbb{R}_+ . Sachant que $-\sqrt{x}$ est négatif, on a :

$$G(x) = 1 - \exp(-(-\sqrt{x})^2) = 1 - e^{-x}$$

Ainsi, G est la fonction de répartition d'une variable aléatoire suivant la loi exponentielle de paramètre 1. On en déduit que Z suit cette même loi.

6. La variable $Z = X^2$ admet une espérance qui vaut 1 (d'après la question précédente), donc X admet une variance qui vaut d'après la formule de Koenig-Huyghens :

$$V(X) = E(X^2) - E(X)^2 = 1 - \frac{\pi}{4}$$

7. Remarquons que X est négative et $X^2 = Z$ donc $X = -\sqrt{Z}$.

Voici les deux fonctions :

```
def simulX(n):
    M=np.zeros(n)
    for i in range(n):
        Z=rd.exponential(1)
        M[i]=-(Z**(1/2))
    return M

def EsperanceX(n):
    S=0
    L=simulX2(n)
    for i in range(n):
        S=S+L[i]
    return S/n
```

8. La fonction h est nulle sur $]-\infty, 0[$ et $]1, +\infty[$ donc positive sur ces intervalles. De plus, si x appartient à [0,1], 1-x aussi donc h(x) est positif.

La fonction h est continue sur $]-\infty,0[$ et $]1,+\infty[$ car constantes sur ces intervalles. Sur]0,1[, h est une fonction polynomiale donc continue. Ainsi, h est continue sur $\mathbb R$ sauf éventuellement en 0 et en 1.

La fonction h étant nulle sur] $-\infty$, 0[et]1, $+\infty$ [, les intégrales :

$$\int_{-\infty}^{0} h(x) dx \text{ et } \int_{1}^{+\infty} h(x) dx$$

convergent et sont nulles. De plus :

$$\int_0^1 h(x) \, \mathrm{d}x = \left[-(1-x)^2 \right]_0^1 = 1$$

Ainsi, on a montré que :

$$\int_{-\infty}^{+\infty} h(x) \, \mathrm{d}x = 1$$

On en déduit que que h peut être considérée comme la densité d'une variable aléatoire.

9. Soit $x \in \mathbb{R}$.

- Si x < 0, H(x) = 0.
- Si x > 1, H(x) = 1.
- Si $x \in [0, 1]$, alors :

$$H(x) = \int_0^x h(t) dt = \left[-(1-t)^2 \right]_0^x = 1 - (1-x)^2$$

10. Soit $x \in \mathbb{R}$. On a :

$$F_n(x) = P(T_n \le x) = P(\sqrt{n}(M_n - 1) \le x) = P(M_n \le \frac{x}{\sqrt{n}} + 1)$$

Un argument (tellement) classique donne :

$$F_n(x) = H\left(1 + \frac{x}{\sqrt{n}}\right)^n$$

- 11. Question très classique : la limite vaut e^y .
- 12. Soit $x \in \mathbb{R}$. Si $x \ge 0$ alors :

$$\forall n \ge 1, \ 1 + \frac{x}{\sqrt{n}} \ge 1$$

donc:

$$H\left(1 + \frac{x}{\sqrt{n}}\right) = 1$$

donc:

$$\lim_{n \to +\infty} F_n(x) = 1$$

Si x < 0 alors :

$$\forall n \ge 1, \ 1 + \frac{x}{\sqrt{n}} < 1$$

Si n tend vers $+\infty$, $1 + \frac{x}{\sqrt{n}}$ tend donc vers 1^- donc à partir d'un certain rang, cette quantité appartient à [0,1] donc :

$$H\left(1 + \frac{x}{\sqrt{n}}\right) = 1 - \left(1 - 1 - \frac{x}{\sqrt{n}}\right)^2 = 1 - \frac{x^2}{n}$$

donc:

$$F_n(x) = \left(1 - \frac{x^2}{n}\right)^n$$

et:

$$\lim_{n \to +\infty} F_n(x) = \exp(-x^2)$$

Ainsi, pour tout réel x:

$$\lim_{n \to +\infty} F_n(x) = F(x)$$

donc la suite de variables aléatoires $(T_n)_{n\geq 1}$ converge en loi vers X.

Problème

Partie 1.

1. Soit $n \ge 1$. On a :

$$\binom{2n}{n} = \frac{(2n)!}{n!n!} = \frac{(n+1)(n+2)\cdots(n+n)}{1\times 2\times \cdots \times n} = \prod_{k=1}^{n} \frac{n+k}{k}$$

donc:

$$B_n = \prod_{k=1}^n \frac{k+n}{4k}$$

L'égalité est aussi vraie pour n = 0.

Voici une proposition de code :

def B(n):
 P=1
 for k in range(1,n+1):
 P=P*(n+k)/k
 return P

- 2. Par simples calculs, $W_0 = \frac{\pi}{2}$ et $W_1 = 1$.
- 3. Soit $n \ge 0$. On a :

$$W_{n+1} - W_n = \int_0^{\frac{\pi}{2}} \sin(t)^{n+1} dt - \int_0^{\frac{\pi}{2}} \sin(t)^n dt$$
$$= \int_0^{\frac{\pi}{2}} (\sin(t)^{n+1} - \sin(t)^n) dt$$
$$= \int_0^{\frac{\pi}{2}} \sin(t)^n (\sin(t) - 1) dt$$

Pour tout $t \in [0, \frac{\pi}{2}]$, $\sin(t) \ge 0$ donc $\sin(t)^n \ge 0$ et $\sin(t) - 1 \le 0$. Ainsi l'intégrande est une fonction négative et les bornes sont dans le bon sens donc l'intégrale est négative.

On en déduit que la suite $(W_n)_{n\geq 0}$ est décroissante.

4. Soit $n \ge 0$. On a :

$$W_{n+2} = \int_0^{\frac{\pi}{2}} \sin(t)^{n+2} dt = \int_0^{\frac{\pi}{2}} \sin(t)^{n+1} \sin(t) dt$$

Les fonctions $t \mapsto \sin(t)^{n+1}$ et $t \mapsto -\cos(t)$ sont de classe \mathcal{C}^1 sur le segment $[0, \frac{\pi}{2}]$, de dérivées respectives $t \mapsto (n+1)\cos(t)\sin(t)^n$ et $t \mapsto \sin(t)$. Par intégration par parties (et par linéarité) on a :

$$W_{n+2} = \left[-\sin(t)^{n+1}\cos(t)\right]_0^{\frac{\pi}{2}} + (n+1)\int_0^{\frac{\pi}{2}}\cos(t)^2\sin(t)^n dt$$
$$= (n+1)\left(\int_0^{\frac{\pi}{2}}\sin(t)^n dt - \int_0^{\frac{\pi}{2}}\sin(t)^{n+2} dt\right)$$
$$= (n+1)W_n - (n+1)W_{n+2}$$

et ainsi:

$$W_{n+2} + (n+1)W_{n+2} = (n+1)W_n$$

donc:

$$(n+2)W_{n+2} = (n+1)W_{n+1}$$

Sachant que n+2 est différent de 0, on en déduit que :

$$W_{n+2} = \left(\frac{n+1}{n+2}\right) W_n$$

5. Montrons par récurrence que pour tout entier $n \ge 0$,

$$W_{2n} = \frac{\pi}{2}B_n$$
 et $W_{2n+1} = \frac{1}{(2n+1)B_n}$

On sait que $W_0 = \frac{\pi}{2}$ et $B_0 = 1$ donc :

$$W_{2\times 0} = \frac{\pi}{2}B_0$$

On sait que aussi que $W_1 = 1$ donc :

$$\frac{1}{(2\times 0+1)B_0} = 1 = W_1$$

Soit $n \in \mathbb{N}$ tel que :

$$W_{2n} = \frac{\pi}{2}B_n$$
 et $W_{2n+1} = \frac{1}{(2n+1)B_n}$

9

On a:

$$W_{2n+2} = \frac{2n+1}{2n+2}W_{2n}$$

$$= \frac{\pi}{2} \times \frac{2n+1}{2n+2}B_n$$

$$= \frac{\pi}{2} \times \frac{2n+1}{2n+2} \times \frac{1}{4^n} {2n \choose n}$$

$$= \frac{\pi}{2} \times \frac{(2n+1)(2n+2)}{2^2(n+1)^2} \times \frac{1}{4^n} {2n \choose n}$$

$$= \frac{\pi}{2} \times \frac{1}{4^{n+1}} \times \frac{(2n+1)(2n+2)(2n)!}{(n+1)^2 n! n!}$$

$$= \frac{\pi}{2} \times \frac{1}{4^{n+1}} \times {2n+2 \choose n+1}$$

$$= \frac{\pi}{2} \times B_{n+1}$$

De même:

$$W_{2n+3} = \frac{2n+2}{2n+3}W_{2n+1}$$

$$= \frac{2n+2}{2n+3} \times \frac{1}{(2n+1)B_n}$$

$$= \frac{2n+2}{(2n+3)(2n+1)} \times \frac{4^n n! n!}{(2n)!}$$

$$= \frac{1}{2n+3} \times \frac{2^2 (n+1)^2}{(2n+2)(2n+1)} \times \frac{4^n n! n!}{(2n)!}$$

$$= \frac{1}{2n+3} \times \frac{4^{n+1} (n+1)! (n+1)!}{(2n+2)!}$$

$$= \frac{1}{2n+3} \times \frac{1}{B_{n+1}}$$

ce qui démontre la propriété souhaitée au rang n+1.

On conclut alors par principe de récurrence.

6. Soit $n \in \mathbb{N}^*$. On a:

$$W_{2n+1} = \frac{2n}{2n+1} W_{2n-1}$$

donc (2n étant non nul):

$$W_{2n-1} = \frac{2n+1}{2n}W_{2n+1} = \frac{2n+1}{2n} \times \frac{1}{(2n+1)B_n} = \frac{1}{2nB_n}$$

7. Soit $n \geq 1$. La suite $(W_n)_{n \geq 0}$ est décroissante donc :

$$W_{2n+1} \le W_{2n} \le W_{2n-1}$$

ce qui donne le résultat :

$$\frac{1}{(2n+1)B_n} \le \frac{\pi}{2}B_n \le \frac{1}{2nB_n}$$

Soit $n \ge 1$. Sachant que $B_n > 0$, on a :

$$\frac{1}{2n+1} \le \frac{\pi}{2}B_n^2 \le \frac{1}{2n}$$

ou encore (en étant plus large à gauche) :

$$\frac{1}{2n+2} \le \frac{\pi}{2}B_n^2 \le \frac{1}{2n}$$

puis:

$$\frac{1}{\pi(n+1)} \le B_n^2 \le \frac{1}{\pi n}$$

On conclut par croissance de la fonction racine carrée sur \mathbb{R}_+ et sachant que B_n est positif.

8. On obtient par encadrement bien justifié:

$$B_n \underset{+\infty}{\sim} \frac{1}{\sqrt{\pi n}}$$

9. (a) Soit $k \in \mathbb{N}^*$. La variable X_k est à valeurs dans $\{-1,1\}$ donc :

$$P(X_k = 1) + P(X_k = -1) = 1$$

Or ces deux probabilités sont égales donc elles valent $\frac{1}{2}$.

La variable Y_k prend donc ses valeurs dans $\{0,1\}$ et :

$$P(Y_k = 1) = P(X_k = 1) = \frac{1}{2}$$

Ainsi, Y_k suit la loi de Bernoulli de paramètre $p=\frac{1}{2}$. Son espérance vaut donc p et sa variance 1-p.

(b) On a:

$$\sum_{k=1}^{n} Y_k = \sum_{k=1}^{n} \frac{X_k + 1}{2} = \frac{n}{2} + \frac{1}{2} \sum_{k=1}^{n} X_k$$

Les variables Y_1, \ldots, Y_n sont indépendantes (par lemme des coalitions car les variables X_1, \ldots, X_n le sont) et suivent la même loi de Bernoulli de paramètre p donc T_n suit la loi binomiale de paramètres n et $p = \frac{1}{2}$.

(c) On sait que $T_n(\Omega) = [0; n]$ donc sachant que :

$$S_n = 2T_n - n$$

On en déduit que :

$$S_n(\Omega) = \{2j - n, j \in [0; n]\}$$

La loi de S_n s'obtient grâce à celle de T_n : pour $j \in [0; n]$,

$$P(S_n = 2j - n) = P(T_n = j) = \binom{n}{j} \frac{1}{2^n}$$

- 10. (a) Soit $k \in [1; 2n]$ un entier impair. Alors S_k prend ses valeurs dans $\{2j k, j \in [0; k]\}$ et cet ensemble contient uniquement des entiers impairs (différence d'un pair et d'un impair) donc S_k ne prend jamais la valeur 0. Cela fournit le résultat souhaité.
 - (b) Soit $k \in \mathbb{N}^*$. On a:

$$(S_{2k} = 0) = (2T_{2k} - 2k = 0) = (T_{2k} = k)$$

Or T_{2k} suit la loi binomiale de paramètres 2k et $\frac{1}{2}$ donc :

$$P(S_{2k} = 0) = {2k \choose k} \frac{1}{2^{2k}} = B_k$$

(c) Il est clair que:

$$R_n = \sum_{k=1}^n 1_{A_k}$$

(d) Par linéarité (les variables sont finies donc ont bien une espérance) :

$$E(R_n) = \sum_{k=1}^n E(1_{A_k}) = \sum_{k=1}^n P(A_k)$$

car 1_{A_k} suit la loi de Bernoulli de paramètre $P(A_k)$. Finalement :

$$E(R_n) = \sum_{k=1}^n B_k$$

11. Proposons deux méthodes.

Méthode 1. Soit $k \in \mathbb{N}^*$. On a par quantité conjuguée :

$$2(\sqrt{k+1} - \sqrt{k}) = 2\frac{(k+1) - k}{\sqrt{k+1} + \sqrt{k}} = \frac{2}{\sqrt{k+1} + \sqrt{k}}$$

Or on a par croissance de la fonction racine carré sur \mathbb{R}_+ :

$$\sqrt{k+1} + \sqrt{k} \ge 2\sqrt{k} > 0$$

donc par décroissance de la fonction inverse sur \mathbb{R}_+^* , on en déduit que :

$$\frac{2}{\sqrt{k+1} + \sqrt{k}} \le \frac{2}{2\sqrt{k}} = \frac{1}{\sqrt{k}}$$

On obtient donc l'inégalité de gauche. Celle de droite se démontre de la même manière.

Méthode 2. Soit $k \in \mathbb{N}^*$. La fonction $x \mapsto \sqrt{x}$ est continue sur [k, k+1] et dérivable sur [k, k+1]. D'après le théorème des accroissements finis, il existe $\theta \in]k, k+1[$ tel que :

$$\sqrt{k+1} - \sqrt{k} = \frac{1}{2\sqrt{c}}$$

Or on a par croissance de la fonction racine carré sur \mathbb{R}_+ :

$$2\sqrt{c} \ge 2\sqrt{k} > 0$$

donc par décroissance de la fonction inverse sur $\mathbb{R}_+^*,$ on en déduit que :

$$\sqrt{k+1} - \sqrt{k} \le \frac{1}{2\sqrt{k}}$$

On obtient donc l'inégalité de gauche. Celle de droite se démontre de la même manière.

12. On sait que:

$$\forall k \ge 1, \qquad \frac{1}{\sqrt{\pi}\sqrt{k+1}} \le B_k \le \frac{1}{\sqrt{\pi}\sqrt{k}}$$

donc d'après la question précédente :

$$\forall k \ge 1, \qquad 2(\sqrt{k+2} - \sqrt{k+1}) \le \sqrt{\pi} B_k \le 2(\sqrt{k} - \sqrt{k-1})$$

donc en sommant et par télescopage:

$$2(\sqrt{n+2}-\sqrt{2}) \le \sqrt{\pi} E(R_n) \le 2\sqrt{n}$$

ou encore en divisant par \sqrt{n} qui est strictement positif :

$$2(\sqrt{1+2/n} - \sqrt{2/n}) \le \frac{\sqrt{\pi}}{\sqrt{n}} E(R_n) \le 2$$

On conclut par encadrement:

$$E(R_n) \underset{+\infty}{\sim} \frac{2}{\sqrt{\pi}} \sqrt{n}$$

Partie 4.

13. (a) On sait que:

$$B_n \underset{+\infty}{\sim} \frac{1}{\sqrt{\pi n}}$$

donc:

$$\frac{1}{4^n} \binom{2n}{n} \underset{+\infty}{\sim} \frac{1}{\sqrt{\pi n}}$$

donc:

$$\binom{2n}{n} \underset{+\infty}{\sim} \frac{4^n}{\sqrt{\pi n}}$$

On obtient le résultat par passage à l'inverse

(b) Soit $x \in [0, 4]$. D'après la question précédente :

$$\frac{x^n}{\binom{2n}{n}} \underset{+\infty}{\sim} \sqrt{\pi n} \left(\frac{x}{4}\right)^n$$

On a:

$$\sqrt{\pi n} \left(\frac{x}{4}\right)^n = o\left(\frac{1}{n^2}\right)$$

par croissances comparées, ce qui donne la convergence (absolue) par comparaison à une série de Riemann (à termes positifs) convergente.

14. Soient $(x,y) \in [0,4]^2$ tel que $x \leq y$. Alors pour tout entier naturel n:

$$x^n \le y^n$$

par croissance de $t \mapsto t^n$ sur \mathbb{R}_+ . Par multiplication par un terme positif:

$$\frac{x^n}{\binom{2n}{n}} \le \frac{y^n}{\binom{2n}{n}}$$

Ceci est vrai pour tout entier naturel n donc par sommation (licite car les séries associées convergent), on en déduit que $f(x) \le f(y)$.

15. (a) Soit $x \in [0, 4[$ et $n \ge 1.$ On a :

$$\frac{1}{\sqrt{\pi}\sqrt{n+1}} \le \frac{1}{4^n} \binom{2n}{n} \le \frac{1}{\sqrt{\pi}\sqrt{n}}$$

donc par décroissance de la fonction inverse sur \mathbb{R}_+^* :

$$\sqrt{\pi}\sqrt{n} \le 4^n \frac{1}{\binom{2n}{n}} \le \sqrt{\pi}\sqrt{n+1}$$

donc en minorant \sqrt{n} par 1, majorant $\sqrt{n+1}$ par n+1 $(n+1 \ge 1)$ et en multipliant par $(x/4)^n$ qui est positif, on a :

$$\sqrt{\pi} \left(\frac{x}{4}\right)^n \le \frac{x^n}{\binom{2n}{n}} \le \sqrt{\pi}(n+1) \left(\frac{x}{4}\right)^n$$

(b) On somme les inégalités précédentes en utilisant les valeurs connues pour les séries géométriques et dérivées :

$$\forall x \in [0, 4[, \sqrt{\pi} \frac{x}{4 - x} \le f(x) \le \sqrt{\pi} \left(\frac{x}{4} \times \frac{1}{(1 - x/4)^2} + \frac{x}{4 - x} \right)$$

Par encadrement, f tend vers 0 en 0 et f(0) = 0 donc f est continue en 0. Par comparaison, f tend vers $+\infty$ en 4^- .

16. Soit $x \in [0, 4[$. Alors :

$$f(x) = \frac{x}{2} + \sum_{n=2}^{+\infty} \frac{x^n}{\binom{2n}{n}} \ge \frac{x}{2}$$

par positivité des termes.

- 17. Voici les éléments clés à représenter pour l'allure :
 - Travailler sur [0, 4].
 - f(0) = 0 et f tend vers $+\infty$ en 4^- .
 - f est croissante et continue sur [0, 4[.
 - Tracer la droite d'équation $y = \frac{x}{2}$ et la courbe de f est située au dessus de celle-ci sur [0, 4[.