CB1 - Sujet 1 EDHEC / Ecricome - 3/11/2025

Consignes

Tous les feuillets doivent être identifiables et numérotés par le candidat. Les candidats sont invités à soigner la présentation de leur copie, à mettre en évidence les principaux résultats, à respecter les notations de l'énoncé et à donner des démonstrations complètes - mais brèves - de leurs affirmations.

Exercice 1

On considère la suite $(S_n)_{n\in\mathbb{N}^*}$ définie par : $\forall n\in\mathbb{N}^*,\ S_n=\sum_{k=1}^n\frac{\ln k}{k}.$

- 1. Étude de la nature de la suite $(S_n)_{n\in\mathbb{N}^*}$.
 - (a) Dresser le tableau de variations de la fonction $f: x \mapsto \frac{\ln(x)}{x}$.
 - (b) En déduire que, pour tout entier k supérieur ou égal à 4, on a :

$$\int_{k}^{k+1} \frac{\ln(x)}{x} \, dx \le \frac{\ln(k)}{k} \le \int_{k-1}^{k} \frac{\ln(x)}{x} \, dx.$$

(c) En déduire l'existence de trois constantes réelles positives A,B et C telles que, pour tout entier naturel n supérieur ou égal à 4, on ait :

$$\frac{\ln^2(n+1)}{2} - A \le S_n - B \le \frac{\ln^2(n)}{2} - C.$$

- (d) En déduire la limite de la suite $(S_n)_{n\in\mathbb{N}^*}$.
- (e) Ecrire un programme Python qui renvoie la plus petite valeur de n pour laquelle on a $S_n \ge 10$.
- 2. Recherche d'un équivalent de S_n .
 - (a) Montrer que $\lim_{n\to+\infty} \frac{\ln^2(n+1)}{\ln^2(n)} = 1$.
 - (b) En déduire que $S_n \sim \frac{\ln^2(n)}{2}$.
- 3. Étude asymptotique de la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}^*, \quad u_n = S_n - \frac{\ln^2(n)}{2}.$$

- (a) Montrer que, pour tout entier n supérieur ou égal à $3, u_{n+1} u_n \le 0$.
- (b) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge.

4. Dans la suite de l'exercice, la limite de la suite $(u_n)_{n\in\mathbb{N}}$ sera notée l.

On considère la suite $(A_n)_{n\in\mathbb{N}^*}$ définie par : $\forall n\in\mathbb{N}^*, A_n=\sum_{k=1}^n (-1)^{k-1} \frac{\ln(k)}{k}$

- (a) Convergence de la suite $(A_n)_{n\in\mathbb{N}^*}$
 - i. Prouver que pour tout entier naturel non nul n, on a

$$A_{2n} = S_{2n} - S_n - \ln(2) \sum_{k=1}^{n} \frac{1}{k}$$

ii. On admet qu'il existe un réel γ tel que

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$$

En déduire que la suite $(A_{2n})_{n\in\mathbb{N}^*}$ converge et déterminer sa limite L en fonction de γ .

- iii. Montrer que la suite $(A_{2n+1})_{n\in\mathbb{N}^*}$ converge également vers L.
- iv. Montrer que la suite $(A_n)_{n\in\mathbb{N}^*}$ converge vers L.
- (b) Une valeur approchée de la limite L de $(A_n)_{n\in\mathbb{N}^*}$
 - i. Vérifier que la suite $(A_{2n})_{n\geq 1}$ est croissante et que la suite $(A_{2n+1})_{n\geq 1}$ est décroissante.
 - ii. En déduire que $\forall n \geq 1, A_{2n} \leq L \leq A_{2n+1}$.
 - iii. Ecrire alors un programme Python permettant d'obtenir une valeur approchée de L à 10^{-5} près.

Exercice 2

Soit $n \geq 2$ un entier naturel. Pour tout $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$, on note

$$A(\alpha) = A(\alpha_1, \dots, \alpha_n) = \begin{pmatrix} 0 & 0 & \ddots & 0 & \alpha_n \\ 0 & \ddots & \cdots & \alpha_{n-1} & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \alpha_2 & \ddots & \ddots & 0 \\ \alpha_1 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

Ainsi, si l'on note $a_{i,j}$ le coefficient de $A(\alpha)$ situé à la ligne i et la colonne j,

$$\forall (i,j) \in [[1,n]]^2, \quad a_{i,j} = \begin{cases} \alpha_j & \text{si } i = n+1-j \\ 0 & \text{sinon} \end{cases}$$

On note

$$\mathcal{E}_n = \{ A(\alpha_1, \cdots, \alpha_n) \mid (\alpha_1, \cdots, \alpha_n) \in \mathbb{R}^n \}$$

Ainsi, \mathcal{E}_n est l'ensemble des matrices de la forme $A(\alpha_1, \dots, \alpha_n)$ lorsque $(\alpha_1, \dots, \alpha_n)$ décrit \mathbb{R}^n .

- 1. Montrer que \mathcal{E}_n est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ et donner une base de \mathcal{E}_n .
- N. Marconnet Lycée Saint Just

- 2. On considère, dans cette question seulement, le cas n=2.
 - (a) Déterminer l'ensemble des valeurs propres de la matrice A(1,1).
 - (b) Déterminer l'ensemble des valeurs propres de la matrice A(1,-1).
 - (c) Toutes les matrices de \mathcal{E}_2 sont-elles inversibles ? Justifier la réponse.
 - (d) Toutes les matrices de \mathcal{E}_2 sont-elles diagonalisables ? Justifier la réponse.
 - (e) Soit $(\alpha_1, \alpha_2) \in \mathbb{R}^2$. Selon les valeurs de α_1 et α_2 , étudier le nombre de valeurs propres de la matrice $A(\alpha_1, \alpha_2)$. A quelles conditions sur α_1 et α_2 la matrice $A(\alpha_1, \alpha_2)$ est-elle diagonalisable?
- 3. On considère, dans cette question seulement, le cas n=3.
 - (a) On considère la matrice B = A(1,1,1). Cette matrice est-elle inversible?
 - (b) Calculer B^2 et en déduire un polynôme annulateur de B.
 - (c) Déterminer le spectre de B et justifier que B est diagonalisable.
 - (d) Donner un exemple de matrice C de \mathcal{E}_3 qui n'est pas diagonalisable.
- 4. Dans cette question, n sera un entier supérieur ou égal à 2.
 - (a) Ecrire une fonction Python intitulée Antidiag1(n) qui renvoie la matrice A(1, 1, ..., 1)de taille $n \times n$.
 - (b) Ecrire une fonction Python intitulée Antidiag2(n) qui renvoie la matrice A(1,2,3,...,n)de taille $n \times n$.
- 5. On travaille encore dans le cas général avec une valeur quelconque de l'entier $n \geq 2$.
 - (a) Soit $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ et $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{R}^n$. Calculer le produit $A(\alpha).A(\beta).$
 - (b) Donner une condition nécessaire et suffisante sur $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ pour que le produit $A(\alpha)$ soit inversible. Dans ce cas, donner l'inverse de $A(\alpha)$.
- 6. Dans toute la suite, n est un entier supérieur ou égal à 2. Soit $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$. Soit $\mathcal{B} = (e_1, \dots, e_n)$ la base canonique de \mathbb{R}^n . Soit f_{α} l'endomorphisme de \mathbb{R}^n dont la matrice dans la base \mathcal{B} est $A(\alpha)$.
 - (a) Pour tout $k \in [[1, n]]$, soit le sous-espace vectoriel F_k de \mathbb{R}^n tel que $F_k = Vect(e_k, e_{n+1-k})$. Montrer que F_k est stable par f_α . Préciser la dimension de F_k .
 - (b) Construire une base de \mathbb{R}^n dans laquelle la matrice de f_{α} s'écrit :

$$\begin{pmatrix} A(\alpha_1,\alpha_n) & \cdots & 0 & 0 \\ \vdots & A(\alpha_2,\alpha_{n-1}) & \ddots & 0 \\ 0 & \cdots & \ddots & \vdots \\ 0 & 0 & \cdots & A(\alpha_{\frac{n}{2}},\alpha_{\frac{n}{2}+1}) \end{pmatrix} \text{ si n est pair, et}$$

$$\begin{pmatrix} A(\alpha_1,\alpha_n) & \cdots & 0 & 0 & 0 \\ \vdots & A(\alpha_2,\alpha_{n-1}) & \ddots & 0 & 0 \\ 0 & \cdots & \ddots & \vdots & 0 \\ 0 & 0 & \cdots & A(\alpha_{\frac{n-1}{2}},\alpha_{\frac{n+3}{2}}) & 0 \\ 0 & 0 & \cdots & 0 & \alpha_{\frac{n+1}{2}} \end{pmatrix} \text{ si n est impair}$$

Problème

On définit la fonction réelle H d'une variable réelle x par : $H(x) = \int_0^{+\infty} \frac{1}{(1+t^2)^x} dt$. Dans tout le problème, I désigne l'intervalle $\left[\frac{1}{2}; +\infty\right[$.

PARTIE I : Premières propriétés de la fonction H

- 1. Justifier que la fonction H est définie sur I.
- 2. Montrer que H est décroissante sur I.
- 3. (a) Calculer H(1).
 - (b) Soit $n \in \mathbb{N}^*$. Montrer, à l'aide d'une intégration par parties que :

$$H(n) = 2n(H(n) - H(n+1))$$

En déduire une expression de H(n+1) en fonction de n et de H(n).

(c) Écrire un programme Python qui, étant donné un entier n de \mathbb{N}^* , renvoie la valeur de H(n).

(d) Montrer:
$$\forall n \in \mathbb{N}^*, \ H(n) = \frac{(2n-2)!\pi}{2^{2n-1}((n-1)!)^2}.$$

PARTIE II : Étude de H(x) lorsque x tend vers $\frac{1}{2}$

- 4. (a) Montrer que la fonction $\varphi: u \mapsto \frac{e^u e^{-u}}{2}$ est une bijection de \mathbb{R} sur \mathbb{R} . Préciser $\varphi^{-1}(0)$ et $\lim_{t \to +\infty} \varphi^{-1}(t)$.
 - (b) A l'aide du changement de variables $t=\varphi(u)$, montrer :

$$\forall x \in I, \ H(x) = \frac{4^x}{2} \int_0^{+\infty} \frac{1}{(e^u + e^{-u})^{2x-1}} du.$$

- 5. (a) Justifier: $\forall u \in [0; +\infty[, e^u \le e^u + e^{-u} \le 2e^u]$.
 - (b) En déduire : $\forall x \in I, \ \frac{1}{2x-1} \leqslant H(x) \leqslant \frac{4^x}{2(2x-1)}$.
- 6. Déterminer la limite de H en $\frac{1}{2}$ et un équivalent simple de H(x) lorsque x tend vers $\frac{1}{2}$.

4/5

PARTIE III : Étude de H(x) lorsque x tend vers $+\infty$

- 7. (a) Montrer: $\forall u \in [0; 1], \ln(1+u) \geqslant \frac{u}{2}$.
 - (b) A l'aide d'un changement de variables, montrer que, pour tout x de I, l'intégrale $\int_0^{+\infty} \mathrm{e}^{-xt^2/2} \,\mathrm{d}t \text{ converge et donner sa valeur.}$
 - (c) En déduire : $\forall x \in I, \ 0 \leqslant \int_0^1 \frac{1}{(1+t^2)^x} \mathrm{d}t \leqslant \int_0^1 \mathrm{e}^{-xt^2/2} \, \mathrm{d}t \leqslant \sqrt{\frac{\pi}{2x}}.$
 - (d) Montrer: $\forall x \in I, \ 0 \leqslant \int_1^{+\infty} \frac{1}{(1+t^2)^x} dt \leqslant \frac{1}{2x-1}.$
 - (e) En déduire la limite de H en $+\infty$.
- 8. On note, pour tout $n \in \mathbb{N}^*$, $u_n = \ln(H(n)) + \frac{\ln(n)}{2}$.
 - (a) Déterminer un équivalent simple de $u_{n+1} u_n$ lorsque l'entier n tend vers $+\infty$. On pourra utiliser le résultat obtenu à la question **3.b.**
 - (b) Montrer que la série $\sum_{n\geq 1} (u_{n+1} u_n)$ converge.
 - (c) En déduire l'existence d'un réel K strictement positif tel que :

$$H(n) \underset{n \to +\infty}{\sim} \frac{K}{\sqrt{n}}$$

9. Donner enfin un équivalent simple de H(x) lorsque le réel x tend vers $+\infty$ à l'aide de K.