ECG2 - Lycée Saint Just Mathématiques Approfondies 2023/24 Programme de colle - **Semaine 7** du 17 au 21 novembre 2025

Informatique: programmation en langage Python

Révision des instructions sur les matrices : définition d'une matrice, matrices usuelles, opérations usuelles sur les matrices.

Calcul d'une somme ou d'un produit : par boucle for ou en utilisant les matrices du type np.arange(1,n+1,1) et les instructions np.sum, np.prod. Tracé d'une courbe en Python, calcul des termes d'une suite. Définition d'une fonction en Python.

Chapitre 4. Intégrales impropres (fonction Gamma uniquement))

VII. La fonction Gamma

Cette fonction est au programme, les résultats doivent être connus.

La fonction Gamma, notée Γ , est la fonction définie sur $]0; +\infty[$ par

$$\forall x \in]0, +\infty[, \quad \Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

- Pour tout x > 0, l'intégrale $\Gamma(x)$ est bien convergente (*)
- $\Gamma(1) = 1$ et pour tout x > 0, $\Gamma(x) > 0$ (*).
- Pour tout x > 0, $\Gamma(x+1) = x.\Gamma(x)$ (*).
- Pour tout $n \in \mathbb{N}$, $\Gamma(n+1) = n!$ (*)

Avoir le réflexe de reconnaître / se ramener à Γ en exercice

Exercice à savoir refaire :

- 1. A l'aide du changement de variables $t=u^2/2,$ montrer que $\Gamma(\frac{1}{2})=\sqrt{\pi}.$ HP classique
- 2. Montrer que pour tout $n \in \mathbb{N}$,

$$\Gamma(n+\frac{1}{2}) = \frac{(2n)! \sqrt{\pi}}{4^n n!}$$

Bien décortiquer ces calculs classiques

Chapitre 5. Révisions de probabilités

Révisions de 1ère année.

Révision <u>autonome</u> des formules et méthodes sur les suites usuelles : suites arithmétiques, suites géométriques, suites arithmético-géométriques, suites récurrentes linéaires d'ordre 2.

- Espace probabilisable.
- Système complet d'événements.
- Définition d'une probabilité. Propriétés, formule du crible $P(A \cup B \cup C)$ (trois événements uniquement). Evénement négligeable, événement réalisé presque sûrement.
- Exercice à savoir refaire : inégalité de Boole : montrer que quels que soient les événements $E_1, ..., E_n$,

$$P\left(\bigcup_{i=1}^{n} E_i\right) \leqslant \sum_{i=1}^{n} P(E_i).$$

- Propriétés de limite monotone en probabilités : pour des familles croissantes/décroissantes d'événements, dans le cas général.
- Probabilité conditionnelle.
- Les deux formules principales : formule des probabilités composées, formule des probabilités totales : ENONCES PRECIS!!
- ullet Indépendance de deux événements, de n événements.

Chapitre 6. Variables aléatoires réelles discrètes (début)

1. Généralités

- Généralités.
- Variable Y = g(X).
- Variable certaine, variable indicatrice d'un événement A.
- SCE associé à une variable discrète.
- Variables discrètes indépendantes. Cas de n variables mutuellement indépendantes.
- Lemmes de coalition.
- Fonction de répartition d'une VAR. Propriétés : fonction croissante, limites en -∞ et +∞, continuité à droite en tout point.
- Cas d'une VAR discrète.

- Déterminer la loi d'une VAR discrète. Formules du type $P(X = k) = P(X \ge k) P(X \ge k + 1)$ etc...
- Loi de X+Y, loi de Max(X,Y) (aussi noté Sup(X,Y)), loi de min(X,Y) (aussi noté inf(X,Y)) : exemples.

2. Lois usuelles (début)

- Loi uniforme sur [[1, n]]: définition, espérance, variance.
- Si $X \hookrightarrow \mathcal{U}([[a,b]])$, alors Y = X a + 1 suit la loi $\mathcal{U}([[1,b-a+1]])$. En déduire l'espérance et la variance de X (*).
- Loi de Bernoulli de paramètre p, espérance, variance.
- Loi binômiale de paramètres n, p: définition, espérance, variance. MODELE: X est égale au nombre de succès lorsque l'on répète n fois une épreuve de Bernoulli \mathcal{E} , de probabilité de succès p, de manière identique et indépendante.
- Loi géométrique de paramètre p: définition, espérance, variance. MODELE: X est égale au temps d'attente du premier succés lorsque l'on répète n fois une épreuve de Bernoulli \mathcal{E} , de probabilité de succès p, de manière identique et indépendante.
- Valeur de P(X > k): à retrouver très rapidement à l'aide du modèle.
- \bullet Loi de Poisson de paramètre λ : définition, espérance, variance. Pas de modèle.

(*): preuve exigible