Chapitre 7 - Variables aléatoires à densité

I. Fonction de répartition

I.1) Rappels

On considère une variable aléatoire X définie sur un espace probabilisé (Ω, \mathcal{A}, P) . La fonction de répartition de la variable aléatoire X, la fonction notée F_X définie par

$$F_X: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto F_X(x) = P([X \le x])$

Proposition I.1

On considère un espace probabilisé (Ω, \mathcal{A}, P) et X une variable aléatoire sur cet espace probabilisé. On note F_X sa fonction de répartition.

- 1. **monotonie**: F_X est croissante sur \mathbb{R} .
- 2. $limites : \lim_{t \to -\infty} (F_X(t)) = 0, \lim_{t \to +\infty} (F_X(t)) = 1$
- 3. continuité à droite en tout point : F_X est continue à droite en tout réel.

Proposition I.2

Une autre propriété

Pour tout réel a, $P([X = a]) = F_X(a) - \lim_{t \to a^-} F_X(t)$.

Proposition I.3

Soit $F: \mathbb{R} \to \mathbb{R}$ une fonction définie sur \mathbb{R} . Si la fonction F vérifie les trois propriétés suivantes :

- 1. F est fonction continue à droite en tout réel.
- 2. F est une fonction croissante sur \mathbb{R} .
- 3. $\lim_{t\to-\infty} (F_X(t)) = 0$ et $\lim_{t\to+\infty} (F_X(t)) = 1$

alors F est la fonction de répartition d'une variable aléatoire X sur (Ω, \mathcal{A}, P) .

I.2) Exemple d'un nouveau type de variable aléatoire

On note

$$\begin{array}{cccc} F: & \mathbb{R} & \rightarrow & \mathbb{R} \\ & x \in [1, +\infty[& \mapsto & F(x) = \frac{2x-2}{2x-1} \\ & x < 1 & \mapsto & F(x) = 0 \end{array}$$

- 1. Montrer que F est une fonction de répartition et tracer son tableau de variation.
- 2. Dessiner la courbe de la fonction F.
- 3. On note X une variable aléatoire de fonction de répartition F. Calculer P(X>2), $P(2 < X \le 3)$, P(X=2), $P_{[X>2]}(X<3)$.

II. Variable aléatoire à densité

II.1) Définition

Définition II.1

On considère un espace probabilisé (Ω, \mathcal{A}, P) et X une variable aléatoire sur cet espace probabilisé. On dit que X est **une variable aléatoire à densité** lorsque sa fonction de répartition F_X vérifie les deux propriétés suivantes :

- 1. F est une fonction continue sur \mathbb{R}
- 2. F est de classe C^1 sur $\mathbb{R} \setminus E$ où E est un ensemble fini de nombres réels.

L'ensemble E est appelé ensemble des points critiques de X (ou de F_X).

II.2) Densité de X

Définition II.2

Une fonction $f: \mathbb{R} \to \mathbb{R}$, qui est continue sur \mathbb{R} sauf éventuellement en un nombre fini de points, positive et telle que $\int_{-\infty}^{+\infty} f(t)dt = 1$ est appelée une densité de probabilité.

Soit X une variable aléatoire à densité sur (Ω, \mathcal{A}, P) .

Soit F_X sa fonction de répartition et $E = \{a_1, a_2, \dots, a_r\}$ l'ensemble de ses points critiques.

On construit la fonction suivante
$$f: \mathbb{R} \to \mathbb{R}^+$$

$$x \in \mathbb{R} \setminus E \mapsto F_X'(x)$$

$$a_1 \mapsto b_1 \geq 0$$

$$a_2 \mapsto b_2 \geq 0$$

$$\vdots$$

$$a_1 \mapsto b_1 \geq 0$$
 arbitraire

Proposition II.1

La fonction f est une densité de probabilité. On dit que c'est UNE densité de X et qu'elle est associée à F_X .

Exercice 1

Soit $F:\mathbb{R}\to\mathbb{R}$ la fonction définie par

$$F(x) = \begin{cases} 0 & \text{si } x < 0 \\ 2\sqrt{x} & \text{si } 0 \le x \le \frac{1}{4} \\ 1 & \text{si } x > \frac{1}{4} \end{cases}$$

- 1. Montrer que F est la fonction de répartition d'une variable aléatoire à densité.
- 2. Tracer le graphe de F.
- 3. Déterminer une densité de X. Tracer la courbe de cette densité.

II.3) D'une densité vers la fonction de répartition

Soit X une variable aléatoire à densité sur (Ω, \mathcal{A}, P) . Soit f une densité de X.

Alors, la fonction de répartition de X est obtenue de la manière suivante :

$$F_X: \mathbb{R} \quad \rightarrow \quad [0,1]$$

$$x \quad \mapsto \quad F_X(x) = \int_{-\infty}^x f(t) dt$$

Ainsi:
$$\forall x \in \mathbb{R}, \quad F_X(x) = \int_{-\infty}^x f(t)dt$$

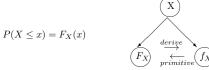
II.4) Points critiques d'une variable aléatoire à densité

Soient X une variable aléatoire à densité sur un espace probabilisé (Ω, \mathcal{A}, P) , f une densité de X et F_X sa fonction de répartition.

- L'ensemble des points critiques de X est l'ensemble des points de **discontinuité** de la fonction f.
- \bullet L'ensemble des points critiques de X est l'ensemble des points où la fonction F n'est pas dérivable.
- F_X est une primitive de la fonction f sur chacun des intervalles de $\mathbb{R} \setminus E$.
- \bullet Si une fonction G définie sur $\mathbb R$ vérifie les trois propriétés suivantes :
 - 1. G est une primitive de f sur chacun des intervalles de $\mathbb{R} \setminus E$
 - 2. La fonction G est continue sur \mathbb{R}
 - 3. $\lim_{x\to-\infty} (G(x)) = 0$ et $\lim_{x\to+\infty} (G(x)) = 1$

Alors
$$G = F_X$$

II.5) Schéma global



$$P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

II.6) Univers image

Soit X une variable aléatoire à densité sur (Ω, \mathcal{A}, P) .

On rappelle que $X:\Omega\to\mathbb{R}$ et que $X(\Omega)=\{X(\omega) \text{ tels que } \omega\in\Omega\}$.

On admettra que

$$X(\Omega) = \{x \in \mathbb{R} \text{ tels que } f(x) > 0\}$$

Ainsi l'ensemble $X(\Omega)$ pour une variable aléatoire est défini à quelques points près, comme le support d'une densité de X.

3

${\rm II.7}$) Formulaire pour une variable à densité

Soit X une variable aléatoire à densité sur (Ω, \mathcal{A}, P) . On note f une densité de X.

Soient a et b des réels tels que a < b.

$$P(X \le a) = \dots$$

$$P(X = a) = \dots$$

$$P(X > a) = \dots$$

$$P(a < X < b) = ...$$

III. Loi d'une variable à densité

III.1) Déterminer une loi

III.1.1 Cas général

Déterminer la loi d'une variable aléatoire consiste à déterminer sa fonction de répartition.

Définition III.1

Soient X et Y des variables aléatoires réelles définies sur le même espace probabilisé (Ω, \mathcal{A}, P) .

On dit que les variables aléatoires X et Y ont la même loi lorsqu'elles ont la même fonction de répartition, c'est à dire lorsque $\forall t \in \mathbb{R}, \quad P(X < t) = \dots$

III.1.2 Cas d'une variable à densité

Définition III.2

Soient X et Y des variables aléatoires réelles définie sur le même espace probabilisé (Ω, \mathcal{A}, P) .

- Si X est une variable aléatoire à densité alors toute fonction f_X qui ne diffère de F_X' qu'en un nombre fini de points (éventuellement aucun) est une densité de X.
 - Si X est une variable aléatoire à densité alors la donnée d'une densité de X caractérise la loi de X.
- Si X et Y sont des variables à densité et si leurs densités coïncident sauf en un nombre fini de points alors les variables X et Y ont la même loi.

III.1.3 loi de g(X) et g(Y)

Proposition III.1

Soient X et Y des variables aléatoires réelles sur l'espace probabilisé (Ω, \mathcal{A}, P) .

Si les variables aléatoires X et Y admettent la même loi et si g est une fonction continue sur $\mathbb R$ et à valeurs dans $\mathbb R$ alors les variables g(X) et g(Y) sont des variables aléatoires réelles admettant la même loi.

III.2) Transformation affine d'une variable à densité

III.2.1 Cas général : loi de aX + b

Théorème III.1

(HP)

Soient a et b deux réels où $a \neq 0$.

Soit X une variable aléatoire à densité de densité f_X . On note $\forall t \in \mathbb{R}$ g(t) = at + b Alors Y = aX + b est une variable aléatoire à densité de densité f_{aX+b} définie par :

$$\begin{array}{cccc} f_{aX+b}: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & y & \longmapsto & f_{aX+b}(y) = \begin{cases} \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right) & \text{si } y \in g(X(\Omega)) \\ 0 & \text{si } y \notin g(X(\Omega)) \end{cases}$$

A noter : $Y(\Omega) = g(X(\Omega))$.

Attention la formule est HP, il faut donc savoir la retrouver!!!

Exemple

Reprenons l'exercice 2 page 2. On considère la variable aléatoire Y=2X-3. Justifier que Y est une variable a densité et déterminer une densité de Y.

Comment déterminer la loi de X^2 ? III.3

Si X est une variable aléatoire discrète :

on détermine d'abord $X^2(\Omega)$

puis pour tout entier
$$x$$
 de $X^2(\Omega)$, on calcule $P(X^2 = x)$ en remarquant que si $x > 0$ alors $P(X^2 = x) = (X = -\sqrt{x}) \cup (X = \sqrt{x})$.

Exemple:

On suppose que $X \hookrightarrow \mathcal{U}([[-5,5]])$.

Déterminer la loi de X^2 .

Si X est une variable aléatoire à densité :

on détermine d'abord $X^2(\Omega)$

$$(X^2\leqslant x)=(-\sqrt{x}\leqslant X\leqslant \sqrt{x}).$$

On suppose que $X \hookrightarrow \mathcal{N}(0,1)$.

Déterminer la loi de X^2 .

Comment déterminer la loi de |X|?

Si X est une variable aléatoire à densité de densité f,

on détermine d'abord $|X|(\Omega)$.

Puis pour tout réel x de $|X|(\Omega)$, on calcule P(|X| < x) en remarquant que $\forall x \in \mathbb{R}^+, P(|X| \le x) = P(-x \le X \le x).$

Comment déterminer la loi de |X| ?

Si X est une variable aléatoire à densité de densité f,

alors on détermine d'abord $|X|(\Omega)$. On remarque que $|X|(\Omega) \subset \dots$

Puis pour tout entier k de $|X|(\Omega)$, on calcule P(|X|=k) en remarquant que $P(|X| = k) = P(k \le X < k + 1).$

Attention !!! |X| est une variable aléatoire discrète.

Exercice 2

Un classique à savoir refaire

On suppose que $X \hookrightarrow \mathcal{E}(\lambda)$. Déterminer la loi de |X|. On note Y = |X| + 1. Reconnaître la loi de Y.

IV. Espérance d'une VAR à densité

IV.1) Définition

Définition IV.1

Soient X une variable aléatoire à densité sur (Ω, \mathcal{A}, P) et f_X une densité de X.

On dit que X admet une espérance lorsque l'intégrale $\int_{-\infty}^{+\infty} t f_X(t) dt$ est absolument convergente. Dans ce cas, on appelle ce réel **espérance de** X et on note E(X) le réel défini par

$$E(X) = \int_{-\infty}^{+\infty} t f_X(t) dt$$

Exemple

Reprenons l'exercice 2 page 2. Justifier que X admet une espérance et calculer cette espérance.

IV.2) Propriétés

Toutes les propriétés de l'espérance vues dans le chapitre II restent valable pour les variables aléatoires à densité:

- la linéarité de l'espérance
- La croissance et la positivité de l'espérance
- Le critère d'existence par domination

IV.3) Formule de transfert pour une variable à densité

Théorème IV.1

Soit X une variable aléatoire réelle à densité sur un espace probabilisé (Ω, \mathcal{A}, P) .

Soit a désignant un réel ou $-\infty$. Soit b désignant un réel ou $+\infty$ tel que a < b.

On suppose que X admet une densité f_X nulle en dehors de l'intervalle]a,b[(c'est à dire $X(\Omega) \subset]a,b[$) On suppose que φ est une fonction **continue** sur a,b sauf éventuellement en un nombre fini de points.

- 1. La variable aléatoire $\varphi(X)$ admet une espérance si et seulement si l'intégrale $\int_{a}^{b} \varphi(t) f(t) dt$ converge absolument.
- 2. Si la variable aléatoire $\varphi(X)$ admet une espérance alors

$$E(\varphi(X)) = \int_a^b \varphi(t). \ f(t) \ dt$$

Exercice 3

On suppose X suit une loi uniforme sur [0, 1].

On note $Y = \cos(\pi X)$. Montrer que Y admet une espérance et la déterminer.

Exercice 4

X suit une loi normale centrée réduite. On note $Y = e^{X+1}$.

Montrer que Y admet une espérance et déterminer l'espérance de Y.

V. Moments d'une VAR

V.1) Moments d'ordre r (HP)

Définition V.1

Soit r un entier non nul.

Soit X une variable aléatoire réelle (discrète ou à densité) sur un espace probabilisé (Ω, \mathcal{A}, P) On dit que la variable aléatoire réelle X admet un moment d'ordre r quand X^r admet une espérance.

Si X est une variable aléatoire réelle admettant un moment d'ordre r, alors le réel

$$m_r(X) = E(X^r)$$

est appelé le moment d'ordre r de X.

Proposition V.1

Si X est une variable aléatoire à densité et si X admet un moment d'ordre r, alors

$$m_r(X) = E(X^r) = \int_{-\infty}^{+\infty} t^r f(t) dt$$

Exercice 5

Soit $r \in \mathbb{N}^*$. Montrer que si $E(X^r)$ existe, alors pour tout $s \in [[1, r]], E(X^s)$ existe.

VI. Variance d'une variable aléatoire réelle

Définition VI.1

Soit X une variable aléatoire réelle (discrète ou à densité) sur un espace probabilisé (Ω, \mathscr{A}, P) . On suppose que X admet un moment d'ordre 2.

On appelle variance de X et on note V(X) le réel défini par :

$$V(X) = E((X - E(X))^2)$$

Théorème VI.1

Formule de Koenig-Huygens.

Soit X une variable aléatoire réelle admettant un moment d'ordre 2. Alors X admet une variance et

$$V(X) = E(X^2) - (E(X))^2$$
.

Théorème VI.2

Propriétés de la variance

Soit X une variable aléatoire réelle admettant un moment d'ordre 2,

Soit Y une variable aléatoire réelle.

- $V(X) \geqslant 0$
- pour tout couple de réels (a, b), aX + b admet une variance et

$$V(aX + b) = a^2$$
. $V(X)$

- V(X) = 0 si et seulement si X = E(X) presque sûrement.
- Si X et Y sont des variables aléatoires indépendantes admettant une variance alors X + Y admet une variance et

$$V(X+Y) = V(X) + V(Y)$$

Si de plus a et b sont deux réels alors

$$V(aX + bY) = a^2 \cdot V(X) + b^2 \cdot V(Y)$$

Définition VI.2

Ecart-type

Soit X une variable aléatoire réelle admettant un moment d'ordre 2.

On appelle écart-type de la variable aléatoire réelle X le réel $\sigma(X) = \sqrt{V(X)}$.

Interprétation

 $\overline{\text{La}}$ variance et l'écart type d'une variable X mesurent la dispersion d'une variable aléatoire autour de sa valeur moyenne.

Définition VI.3

Soit X une variable aléatoire réelle sur un espace probabilisé (Ω, \mathcal{A}, P) .

On dit que la variable X est **centrée réduite** lorsque la variable aléatoire X admet un moment d'ordre 2 et que :

$$E(X) = 0$$
 et $\sigma(X) = 1$

Proposition VI.1

Variable centrée réduite associée

Soit X une variable aléatoire réelle définie sur un espace probabilisé (Ω, \mathcal{A}, P) admettant un moment d'ordre 2. On suppose que $V(X) \neq 0$

La variable aléatoire réelle

$$X^* = \frac{X - E(X)}{\sigma(X)}$$

est une variable aléatoire réelle centrée réduite.

On dit que la variable X^* est la variable aléatoire réelle centrée réduite associée à X.

VII. Loi uniforme

VII.1) Un exercice

Soient a et b deux réels tels que a < b. On note f la fonction définie par

$$\begin{array}{cccccc} f: & \mathbb{R} & \rightarrow & \mathbb{R} \\ & t < a & \mapsto & f(t) & = 0 \\ & a \leq t \leq b & \mapsto & f(t) & = \frac{1}{b-a} \\ & t > b & \mapsto & f(t) & = 0 \end{array}$$

- 1. Tracer la courbe de f.
- 2. Justifier que f est une densité de probabilité. Soit X une variable à densité de densité f.
- 3. Déterminer la fonction de répartition de X, puis tracer l'allure de sa courbe représentative.
- 4. Justifier que X admet une espérance et calculer cette espérance
- 5. Justifier que X admet une variance et calculer cette variance.

VII.2) Définition

Définition VII.1

Avec la fonction de répartition

Soient a et b deux réels tels que a < b.

Soit X une variable aléatoire sur un espace probabilisé (Ω, \mathcal{A}, P) .

On dit que X suit une loi uniforme sur [a,b] et on note $X \hookrightarrow \mathcal{U}_{[a,b]}$ lorsque sa fonction de répartition F est définie par:

$$\begin{array}{cccccc} F: & \mathbb{R} & \rightarrow & \mathbb{R} \\ & x < a & \mapsto & F(x) & = 0 \\ & a \leq x \leq b & \mapsto & F(x) & = \frac{x-a}{b-a} \\ & x > b & \mapsto & F(x) & = 1 \end{array}$$

Définition VII.2

Avec une densité

Soient a et b deux réels tels que a < b.

Soit X une variable aléatoire sur un espace probabilisé (Ω, \mathcal{A}, P) .

On dit que X suit **une loi uniforme sur** [a,b] et on note $X \hookrightarrow \mathcal{U}_{[a,b]}$ lorsque X est une variable aléatoire à densité et qu'une de ses densités est définie de la manière suivante:

points critiques, univers image

Si
$$X \hookrightarrow \mathcal{U}_{[a,b]}$$
 alors $E = \{a,b\}$ et $X(\Omega) = [a,b]$
On note aussi : $X \hookrightarrow \mathcal{U}_{|a,b|}$ ou $X \hookrightarrow \mathcal{U}_{|a,b|}$

Théorème VII.1

Si $X \hookrightarrow \mathcal{U}_{[a,b]}$ alors X admet une espérance et une variance,

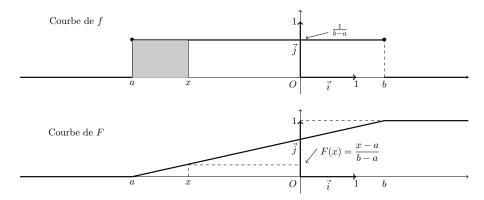
$$E(X) = \frac{a+b}{2}$$
 et $V(X) = \frac{(b-a)^2}{12}$

VII.2.1 Courbes

Soient a et b deux réels tels que a < b.

Soit X une variable aléatoire sur un espace probabilisé (Ω, \mathcal{A}, P) qui suit loi uniforme sur [a, b].

Traçons les courbes de f et de F l'une en dessous de l'autre :



VII.3) Stabilité par transformation affine pour les lois uniformes

Proposition VII.1

Soient a et b deux réels tels que a < b.

Soit X une variable aléatoire sur un espace probabilisé (Ω, \mathcal{A}, P) .

$$X \hookrightarrow \mathcal{U}_{[0,1]} \iff a + (b-a)X \hookrightarrow \mathcal{U}_{[a,b]}$$

Proposition VII.2

Soient α et β deux réels tels que $\alpha \neq 0$. On note $\forall t \in \mathbb{R}, g(t) = \alpha t + \beta$.

Soit X une variable aléatoire suivant une loi uniforme, alors la variable aléatoire $Y = \alpha X + \beta$ suit une loi uniforme de support $Y(\Omega) = g(X(\Omega))$.

Remarque

Soient a et b des réels tels que a < b. Soient α et β deux réels.

Soit X une variable aléatoire sur un espace probabilisé, $X \hookrightarrow \mathcal{U}_{[a,b]}$. On note $Y = \alpha X + \beta$.

Pour obtenir la loi de Y, on commencera par déterminer l'ensemble $Y(\Omega)$ puis on appliquera le théorème de stabilité par transformation affine pour les lois uniformes.

10

Exercice 6

Soit X une var sur (Ω, \mathcal{A}, P) .

1. Donner les densités, fonctions de répartition, espérance dans chacun des cas suivants.

$$i) X \hookrightarrow \mathcal{U}_{([0,1])}$$
 $ii) X \hookrightarrow \mathcal{U}_{([-2,5])}$

2. On suppose que $X \hookrightarrow \mathcal{U}_{([-2,5])}$. Déterminer la loi de Y = -2X + 3.

VII.4) Loi uniforme (continue) en Python

VIII. Loi exponentielle

VIII.1) Un exercice

Soit α un nombre réel strictement positif. On note f la fonction définie par

$$\begin{array}{cccc} f: & \mathbb{R} & \to & \mathbb{R} \\ & t < 0 & \mapsto & f(t) & = 0 \\ & t \geq 0 & \mapsto & f(t) & = \alpha.e^{-\alpha t} \end{array}$$

- 1. Justifier que f est une densité de probabilité et tracer l'allure de sa courbe dans un repère orthonormé. On considère une variable aléatoire X à densité de densité f.
- 2. Déterminer la fonction de répartition de X et tracer l'allure de la courbe représentative de F.
- 3. Justifier que X admet une espérance et calculer cette espérance.
- 4. Justifier que X admet une variance et calculer cette variance.

VIII.2) Définition

Définition VIII.1 Avec la fonction de répartition

Soit α un réel strictement positif.

Soit X une variable aléatoire sur un espace probabilisé (Ω, \mathcal{A}, P) .

On dit que X suit une loi exponentielle de paramère α et on note $X \hookrightarrow \mathscr{E}(\alpha)$ lorsque la fonction de répartition de X est définie par:

$$\begin{array}{ccccc} F: & \mathbb{R} & \rightarrow & \mathbb{R} \\ & x < 0 & \mapsto & F(x) & = 0 \\ & x \geq 0 & \mapsto & F(x) & = 1 - e^{-\alpha x} \end{array}$$

Définition VIII.2 Par une densité

Soit α un réel strictement positif.

Soit X une variable aléatoire sur un espace probabilisé (Ω, \mathcal{A}, P) .

On dit que X suit **une loi exponentielle de paramètre** α et on note $X \hookrightarrow \mathcal{E}(\alpha)$ lorsque X est une variable aléatoire à densité et qu'une de ses densités est :

$$\begin{array}{cccc} f: & \mathbb{R} & \rightarrow & \mathbb{R} \\ & t < 0 & \mapsto & f(t) & = 0 \\ & t \geq 0 & \mapsto & f(t) & = \alpha e^{-\alpha t} \end{array}$$

Points critiques, univers image:

Si
$$X \hookrightarrow \mathcal{E}(\alpha)$$
 alors $E = \{0\}$ et $X(\Omega) = \mathbb{R}^+$.

Théorème VIII.1

Si $X \hookrightarrow \mathscr{E}(\alpha)$ alors X admet une espérance et une variance et

$$E(X) = \frac{1}{\alpha} \text{ et } V(X) = \frac{1}{\alpha^2}$$

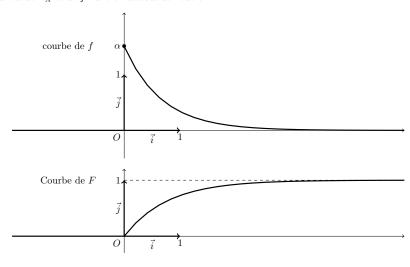
VIII.3) Loi exponentielle en Python

Attention!

VIII.4) Courbes

Soient α un réel strictement positif. Soit X une variable aléatoire sur un espace probabilisé (Ω, \mathscr{A}, P) qui suit loi exponentielle de paramètre α .

Traçons les courbes de F_X et de f l'une en dessous de l'autre.



VIII.5) Stabilité par transformation linéaire pour les lois exponentielles

Proposition VIII.1

Soient α un réel strictement positif.

Soit X une variable aléatoire sur un espace probabilisé (Ω, \mathcal{A}, P) .

$$X \hookrightarrow \mathscr{E}(1) \iff \frac{1}{\alpha}X \hookrightarrow \mathscr{E}(\alpha)$$

$$X \hookrightarrow \mathscr{E}(\alpha) \iff \alpha X \hookrightarrow \mathscr{E}(1)$$

Exercice 7

Soit X une variable aléatoire suivant la loi exponentielle de paramètre 1. On note $Y = \ln(X)$.

On admet que Y est une variable aléatoire. Justifier que Y est une variable à densité et déterminer une densité de Y.

12

VIII.6) Modèle

Durée de vie : On note X la durée de vie d'un appareil qui est mis en route à l'instant t=0. Comment traduire avec X les événements suivants

A: "il tombe en panne à l'instant t"?

B: "il est en panne à l'instant t"?

C: "il fonctionne à l'instant t"?

Modèle : On dit que la durée de vie est **sans mémoire** si le fait d'avoir déjà fonctionné un certain temps n'influe pas sur le temps de (bon) fonctionnement ultérieur.

Processus sans mémoire :

Soit X une variable aléatoire sur un espace probabilisé (Ω, \mathscr{A}, P) telle que $X(\Omega) \subset \mathbb{R}^+$. On dit que la variable X est sans mémoire lorsque

$$\forall t \ge 0 \text{ et } \forall h \ge 0: \quad P_{[X>h]}(X>t+h) = P(X>t)$$

Caractérisation de la loi exponentielle

Soit X une variable aléatoire sur un espace probabilisé (Ω, \mathscr{A}, P) à densité et admettant une densité à valeurs strictement positives sur \mathbb{R}^{+*} .

$$X$$
 suit une loi exponentielle $\Longleftrightarrow X$ est sans mémoire et $\mathrm{P}\left(X\geq0\right)=1$

 $\label{eq:Autrement} \mbox{ dit}: \mbox{Les variables aléatoires suivant une loi exponentielle sont les seules variables aléatoires positives sans mémoire.}$

Preuve

- 1. Soient $\alpha > 0$ et X une variable aléatoire de loi exponentielle de paramètre α .
 - (a) Justifier que pour tout réel x positif ou nul, le nombre P(X > x) est non nul.
 - (b) Montrer que pour tous réels positifs t et h,

$$P_{[X>h]}(X>t+h) = P(X>t)$$

2. soit X une variable aléatoire admettant une densité f continue sur \mathbb{R}^+ et vérifiant

$$\forall t \in \mathbb{R}_+ \quad f(t) > 0.$$

On suppose de plus, que P $(X \ge 0) = 1$ et que, pour tous réels positifs t et h, $P_{(X > h)}(X > t + h) = P(X > t)$

On note $\forall x \in \mathbb{R}^+, \ q(x) = P(X > x).$

- (a) Justifier que q est de classe \mathscr{C}^1 sur \mathbb{R}^+ et exprimer sa dérivée en fonction de f
- (b) Justifier que q(x) est non nul pour tout réel x positif.
- (c) Justifier que $\forall h \in \mathbb{R}^+, \forall x \in \mathbb{R}^+$ g(x+h) = g(x)g(h).
- (d) On note $\alpha = f(0)$. Montrer que pour tout x réel positif ou nul, on a la relation $g'(x) + \alpha g(x) = 0$.
- (e) Calculer la dérivée de $x \mapsto g(x)e^{\alpha x}$ sur \mathbb{R}_+
- (f) Déduire que X suit une loi exponentielle dont on précisera le paramètre.

IX. Loi normale ou loi de Laplace-Gauss

IX.1) Intégrale de Gauss (rappel)

Théorème IX.1

Intégrale de Gauss

L'intégrale $\int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt$ converge et

$$\int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt = \sqrt{2\pi}$$

IX.2) Une nouvelle function: la fonction Φ

On note:
$$\forall t \in \mathbb{R}$$
, $f(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$ et $\forall x \in \mathbb{R}$, $\Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt$

- 1. Justifier que f est de classe \mathscr{C}^{∞} sur \mathbb{R} et dresser son tableau de variation.
- 2. Déterminer les coordonnées des points d'inflexions à la courbe de f.
- 3. Tracer la courbe de f et placer les tangentes à la courbe aux points d'inflexion.
- 4. Justifier que f est une densité de probabilité.
- 5. Dresser le tableau de variation de la fonction Φ . Tracer sa courbe en dessous de la courbe de f. Préciser la valeur de $\Phi(0)$.
- 6. Montrer que $\forall x \in \mathbb{R}, \ \Phi(-x) + \Phi(x) = 1.$

Théorème IX.2

La fonction de répartition d'une loi normale centrée réduite Φ vérifie :

- la fonction Φ est de classe \mathscr{C}^{∞} sur \mathbb{R} à valeurs dans]0,1[et strictement croissante sur \mathbb{R} .
- $\Phi(0) = \frac{1}{2}$
- $\forall x \in \mathbb{R}$ $\Phi(-x) = 1 \Phi(x)$

IX.3) Loi normale centrée réduite

Définition IX.1

Par la fonction de répartition

Soit X une variable aléatoire sur un espace probabilisé (Ω, \mathcal{A}, P) .

On dit que X suit la loi normale centrée réduite et on note $X \hookrightarrow \mathcal{N}(0,1)$ lorsque sa fonction de répartition Φ est définie par:

$$\Phi: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

Remarque

Cette fonction n'est pas calculable!

Définition IX.2

Par une densité

Soit X une variable aléatoire sur un espace probabilisé (Ω, \mathcal{A}, P) .

On dit que X suit la loi normale centrée réduite et on note $X \hookrightarrow \mathcal{N}(0,1)$ lorsque X est une variable aléatoire à densité et qu'une de ses densités est définie de la manière suivante:

$$\begin{array}{cccc} f: & \mathbb{R} & \to & \mathbb{R} \\ & t & \mapsto & f(t) & = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}} \end{array}$$

Points critiques, univers image

 $\operatorname{Si} X \hookrightarrow \mathcal{N}(0,1) \text{ alors } E = \emptyset \text{ et } X(\Omega) = \mathbb{R}$

Théorème IX.3

Si $X \hookrightarrow \mathcal{N}(0,1)$ alors X admet une espérance et E(X) = 0 et V(X) = 1

IX.4) Loi normale (ou de Laplace-Gauss) de paramètres m et σ^2

Théorème IX.4

Soient $m \in \mathbb{R}$ et $\sigma \in]0, +\infty[$

On admettra que :

$$\int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(t-m)^2}{2.\sigma^2}} dt = 1$$

Proposition IX.1

Soient $m \in \mathbb{R}$ et $\sigma \in]0, +\infty[$

On note:

$$\forall t \in \mathbb{R} \quad f(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(t-m)^2}{2\sigma^2}}$$

La fonction f est une densité de probabilité.

Définition IX.3

Par la fonction de répartition

Soit X une variable aléatoire sur un espace probabilisé (Ω, \mathcal{A}, P) .

Soient $m \in \mathbb{R}$ et $\sigma \in]0, +\infty[$

On dit que X suit **une loi normale de paramètres** (m, σ^2) et on note $X \hookrightarrow \mathcal{N}(m, \sigma^2)$ lorsque sa fonction de répartition F est définie par:

$$F: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto F(x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-m)^2}{2\sigma^2}} dt$$

Définition IX.4

Par une densité

Soit X une variable aléatoire sur un espace probabilisé (Ω, \mathcal{A}, P) .

Soient $m \in \mathbb{R}$ et $\sigma \in]0, +\infty[$

On dit que X suit une loi normale de paramètres (m, σ^2) et on note $X \hookrightarrow \mathcal{N}(m, \sigma^2)$ lorsque X est une variable aléatoire à densité et qu'une de ses densités est définie de la manière suivante:

$$f: \mathbb{R} \to \mathbb{R}$$

$$t \mapsto f(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(t-m)^2}{2\sigma^2}}$$

A retenir

Soient $m \in \mathbb{R}$ et $\sigma \in]0, +\infty[$.

Si $X \hookrightarrow \mathcal{N}(m, \sigma^2)$, alors la courbe de la densité de X (ci dessus) admet un maximum au point d'abscisse m et deux points d'inflexions d'abscisses $m-\sigma$ et $m+\sigma$.

Points critiques, univers image

Si $X \hookrightarrow \mathcal{N}(m, \sigma^2)$ alors $E = \emptyset$ et $X(\Omega) = \mathbb{R}$

Théorème IX.5

Si $X \hookrightarrow \mathcal{N}(m, \sigma^2)$ alors X admet un moment d'ordre 2 et

$$E(X) = m$$
 et $V(X) = \sigma^2$

IX.5) Stabilité des lois normales par transformation affine

Théorème IX.6

Théorème de centrage-réduction

Soient $m \in \mathbb{R}$ et $\sigma \in]0, +\infty[$

Si $X \hookrightarrow \mathcal{N}(m, \sigma^2)$ alors la variable définie par $X^* = \frac{X - m}{\sigma}$ suit une loi normale centrée réduite.

$$X \hookrightarrow \mathcal{N}(m, \sigma^2) \Longleftrightarrow \frac{X - m}{\sigma} \hookrightarrow \mathcal{N}(0, 1)$$

Théorème IX.7

Stabilité par transformation affine

Soient a et b deux nombres réels tels que $a \neq 0$.

Si une variable aléatoire X suit une loi normale alors n'importe quelle transformée affine aX+b de cette variable aléatoire suit encore une loi normale.

Pour obtenir les paramètres de la loi de aX+b, on calculera l'espérance et la variance de la variable aX+b, puis on évoquera le théorème de stabilité par transformation affine pour une loi normale.

16

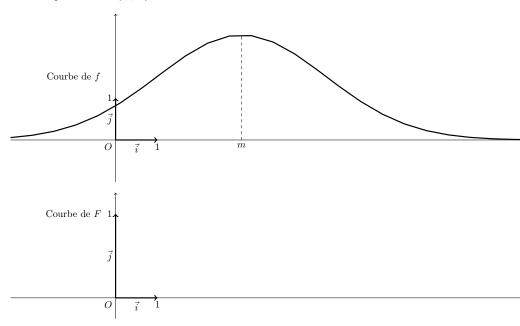
Exercice 8

Soit X une variable aléatoire suivante une loi normale de paramètres (1,3).

Préciser une densité de X puis déterminer une densité de la variable 5-X, puis de la variable 2X-4.

IX.6) Courbes

Soient $m \in \mathbb{R}$ et $\sigma \in]0, +\infty[$. On suppose que X est une variable aléatoire à densité qui suit **une loi normale de paramètres** (m, σ^2) .



IX.7) Simulation en Python

IX.8) Des exercices

Exercice 9

Calculs d'intégrales

Justifier que l'intégrale suivante existe et la calculer.

$$I = \int_0^{+\infty} t^2 e^{-t^2} dt$$

Exercice 10

On suppose que $X \hookrightarrow \mathcal{N}(0,1)$.

Justifier que X^2 est une variable à densité et déterminer une densité de X^2 .

X. Indépendance de VAR

X.1) Rappels: Définitions, Coalition

X.1.1 Cas de deux variables

Soient X et Y deux variables aléatoires réelles définies sur le même espace probabilisé (Ω, \mathcal{A}, P) .

On dit que les variables aléatoires X et Y sont **indépendantes** lorsque : pour tout couple de réels (x,y) les événements $(X \le x)$ et $(Y \le y)$ sont indépendants.

X.1.2 Cas de n variables mutuellement indépendantes

Définition X.1

Soient X_1, X_2, \dots, X_n n variables aléatoires réelles définies le même espace probabilisé (Ω, \mathcal{A}, P) . On dit que les variables aléatoires X_1, X_2, \dots, X_n sont **mutuellement indépendantes** lorsque pour tout n-uplet (x_1, \dots, x_n) de réels,

les événements $(X_1 \le x_1), (X_2 \le x_2), \dots, (X_n \le x_n)$ sont mutuellement indépendants.

X.1.3 Lemme de coalition

Les deux versions du Lemme de coalition sont valables pour les variables à densité.

X.2) Loi de Min(X,Y) et de Max(X,Y)

1. Soient X et Y deux variables aléatoires indépendantes définies sur le même espace probabilisé $(\Omega), \mathscr{A}, P)$ suivant une même loi uniforme sur [0,1].

On note Z = Max(X, Y).

Justifier que Z est une variable à densité et déterminer une densité de Z.

2. Soient a et b des réels strictement positifs. Soient X et Y deux variables aléatoires réelles indépendantes suivant toutes les deux des lois exponentielles de paramètres respectifs a et b.

On note T = Min(X, Y).

Justifier que T est une variable à densité et déterminer une densité de T.

X.3) $\;\;$ Loi de la somme : produit de convolution dans le cas des variables à densités

Théorème X.1

Soient X et Y deux variables aléatoires réelles à densité **indépendantes** définies sur le même espace probabilisé (Ω, \mathscr{A}, P) de densités respectives f_X et f_Y .

On note

$$\forall x \in \mathbb{R}, \ h(x) = \int_{-\infty}^{+\infty} f_X(t) f_Y(x-t) dt$$

Si la fonction h est définie, continue sur $\mathbb R$ sauf éventuellement en un nombre fini de points alors h est une densité et X+Y est une variable aléatoire à densité de densité h donc :

$$\forall x \in \mathbb{R}, \ f_{X+Y}(x) = \int_{-\infty}^{+\infty} f_X(t) f_Y(x-t) dt$$

18

La fonction h s'appelle le **produit de convolution** de f_X et f_Y .

Remarque

Le changement de variable u = x - t permet d'établir que

$$\forall x \in \mathbb{R} \quad h(x) = \int_{-\infty}^{+\infty} f_X(t) f_Y(x-t) dt = \int_{-\infty}^{+\infty} f_X(x-t) f_Y(t) dt$$

Théorème X.2

Soient X et Y deux variables aléatoires réelles à densité, **indépendantes**, définies sur le même espace probabilisé (Ω, \mathscr{A}, P) de densités respectives f_X et f_Y .

On note $\forall x \in \mathbb{R}$,

$$h(x) = \int_{-\infty}^{+\infty} f_X(t) f_Y(x-t) dt$$

Si f_X ou f_Y est bornée sur $\mathbb R$ alors la fonction h est une densité et X+Y est une variable aléatoire à densité h donc :

$$\forall x \in \mathbb{R}, \quad f_{X+Y}(x) = \int_{-\infty}^{+\infty} f_X(t) f_Y(x-t) dt = \int_{-\infty}^{+\infty} f_X(x-t) f_Y(t) dt$$

X.3.1 En pratique

Pour obtenir une densité d'une variable X+Y il faudra s'assurer :

- ullet que les variables X et Y sont bien des variables à densité et qu'elles sont indépendantes
- qu'il ne s'agit pas de lois usuelles qui vérifient des thm de stabilité par la somme
- déterminer $(X+Y)(\Omega)$: ainsi $\forall x \notin (X+Y)(\Omega), h(x)=0$
- vérifier que l'une des densités est bornées sur \mathbb{R} (ce n'est pas toujours le cas).

Exercice 11

Soient λ et μ des réels strictement positifs tels que $\lambda \neq \mu$.

Soient X et Y deux variables aléatoires réelles indépendantes définies sur le même espace probabilisé $(\Omega), \mathscr{A}, P)$ suivant toutes les deux des lois exponentielles de paramètres respectifs λ et μ . On note Z = X + Y.

Justifier que Z est une variable à densité et déterminer une densité de Z

X.4) Espérance du produit de deux variables réelles indépendantes

Théorème X.3

Soient X et Y deux variables aléatoires réelles sur le même espace probabilisé (Ω, \mathcal{A}, P) .

Si X et Y sont des variables aléatoires à densité **indépendantes**, admettant une espérance **alors** XY est une variable aléatoire admettant une espérance et

$$E(XY) = E(X)E(Y)$$

XI. La loi petit gamma

XI.1) Rappel: la fonction Gamma

On rappelle que l'on a étudié la fonction Γ définie sur $]0, +\infty[$ par

$$\forall x \in]0, +\infty[, \quad \Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

On a montré que : $\forall x \in]0, +\infty[, \Gamma(x) > 0]$

XI.2) Densité d'une loi petit gamma

Définition XI.1

Soit ν un réel strictement positif.

Soit X une variable aléatoire sur un espace probabilisé (Ω, \mathcal{A}, P) .

On dit que X suit **une loi petit gamma de paramètre** ν et on note $X \hookrightarrow \gamma(\nu)$ lorsque X est une variable aléatoire à densité et qu'une de ses densités est :

$$\begin{array}{ccccc} f: & \mathbb{R} & \to & \mathbb{R} \\ & t \leqslant 0 & \mapsto & f(t) & = 0 \\ & t > 0 & \mapsto & f(t) & = \frac{1}{\Gamma(\nu)} \; t^{\nu-1} e^{-t} \end{array}$$

Remarque

$$X \hookrightarrow \gamma(1) \Longleftrightarrow X \hookrightarrow \mathscr{E}(1)$$

Remarque

Il faudra savoir tracer la courbe de cette densité suivant les valeurs de ν suivant les trois cas $\nu \in]0,1[$, $\nu=1$ et $\nu>1$.

Points critiques, univers image

Si
$$X \hookrightarrow \gamma(\nu)$$
 alors $E = \{0\}$ et $X(\Omega) =]0, +\infty[$

Théorème XI.1

Si $X \hookrightarrow \gamma(\nu)$ alors X admet un moment d'ordre 2,

$$E(X) = \nu$$
 et $V(X) = \nu$

Exercice 12

Soit X une variable aléatoire suivant la loi petit gamma de paramètre 2. On note $Y=e^X$. Montrer que Y est une variable à densité et déterminer une densité de Y.

XI.3) Courbes en Python

Tracer les courbes en Python d'une densité d'une loi γ suivant les valeurs du paramètre.

Théorèmes de stabilité pour la somme

XII.1) Théorème de stabilité pour les lois petit gamma

XII.1.1 Cas de deux variables

Théorème XII.1

Soient X_1 et X_2 deux variables aléatoires réelles sur l'espace probabilisé (Ω, \mathcal{A}, P) . Soient $\nu_1 \in]0, +\infty[$ et $\nu_2 \in]0, +\infty[$

Si $X_1 \hookrightarrow \gamma(\nu_1)$, si $X_2 \hookrightarrow \gamma(\nu_2)$ et si X_1 et X_2 sont des variables **indépendantes** alors $X_1 + X_2 \hookrightarrow \gamma(\nu_1 + \nu_2)$

XII.1.2 Cas de m variables

Théorème XII.2

Soit m un entier naturel supérieur ou égal à 2.

Soit $(\nu_1, \nu_2, \dots, \nu_m) \in ([0, +\infty[)^m]$.

On considère X_1, X_2, \ldots, X_m une famille de m variables aléatoires réelles telles que :

 $\forall k \in [[1, m]], X_k \hookrightarrow \gamma(\nu_k).$

Si les m variables aléatoires X_1, X_2, \ldots, X_m sont mutuellement indépendantes

alors
$$X_1 + X_2 + \ldots + X_m \hookrightarrow \gamma(\nu_1 + \nu_2 + \cdots + \nu_n)$$

Conséquences sur les lois exponentielles de paramètre 1

Soit m un entier naturel supérieur ou égal à 2.

Soient X_1, X_2, \ldots, X_m une famille de m variables aléatoires réelles sur l'espace probabilisé (Ω, \mathcal{A}, P) .

Si $\forall k \in [[1,m]], X_k \hookrightarrow \mathscr{E}(1)$ et si les m variables aléatoires X_1, X_2, \ldots, X_m sont mutuellement indépendantes

alors $X_1 + X_2 + \ldots + X_m \hookrightarrow \cdots$

Théorème de stabilité pour la somme pour les lois normales

XII.2.1 Cas de deux variables

Théorème XII.3

Soient X_1 et X_2 deux variables aléatoires réelles sur l'espace probabilisé (Ω, \mathcal{A}, P) . Soient $m_1 \in \mathbb{R}$ et $m_2 \in \mathbb{R}$. Soient $\sigma_1 \in \mathbb{R}^*_{\perp}$ et $\sigma_2 \in \mathbb{R}^*_{\perp}$

Si $X_1 \hookrightarrow \mathcal{N}(m_1, \sigma_1^2)$, si $X_2 \hookrightarrow \mathcal{N}(m_2, \sigma_2^2)$ et si X_1 et X_2 sont des variables indépendantes alors

$$X_1 + X_2 \hookrightarrow \mathcal{N}(m_1 + m_2, \sigma_1^2 + \sigma_2^2)$$

XII.2.2 Cas de r variables

Théorème XII.4

Soit r un entier naturel supérieur ou égal à 2, soit $(m_1, m_2, \dots, m_r) \in \mathbb{R}^r$ et $(\sigma_1, \sigma_2, \dots, \sigma_r) \in (\mathbb{R}^*_+)^r$. On considère X_1, X_2, \ldots, X_r une famille de r variables aléatoires réelles sur l'espace probabilisé (Ω, \mathcal{A}, P) .

Si $\forall k \in [[1,r]], X_k \hookrightarrow \mathcal{N}(m_k, \sigma_k^2)$ et si les r variables aléatoires X_1, X_2, \ldots, X_r sont mutuellement indépendantes, alors

$$X_1 + X_2 + \ldots + X_r \hookrightarrow \mathcal{N}(m_1 + \cdots + m_r, \sigma_1^2 + \cdots + \sigma_r^2)$$

XIII. Inégalité de Markov et inégalité de Bienaymé-Tchebychev

XIII.1) Inégalité de Markov

Théorème XIII.1

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire réelle sur un espace probabilisé (Ω,\mathscr{A},P) . Si $X(\Omega) \subset \mathbb{R}_+$ (c'est-à-dire si $X \ge 0$), et si X admet une espérance, alors

$$\forall a > 0, \quad P(X \geqslant a) \leqslant \frac{E(X)}{a}$$

Démonstration de l'inégalité de Markov:

Avec les hypothèses de l'énoncé.

Soit a un réel strictement positif. On note A l'événement A = [X > a] On note $\mathbb{1}_A$ la variable indicatrice de l'événement A.

22

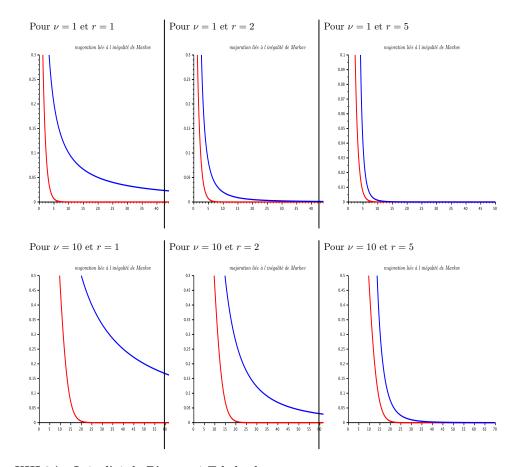
- 1. Rappeler la définition de la variable 1_A.
- 2. Calculer l'espérance de la variable 1₄.
- 3. Montrer que $a \times \mathbb{1}_A \leq X$. En déduire l'inégalité de Markov.

XIII.2) Une application

Soit X une variable aléatoire de loi $\gamma(\nu)$ où $\nu > 0$.

Soit r un entier naturel.

- 1. Justifier que X admet un moment d'ordre r et calculer ce moment d'ordre r.
- 2. Justifier que $\forall a > 0, P(|X| \ge a) \le \frac{E(|X|^r)}{a^r}$



XIII.3) Inégalité de Bienaymé-Tchebychev

Théorème XIII.2

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire réelle définie sur un espace probabilisé (Ω,\mathcal{A},P) . On suppose que la variable X admet un moment d'ordre 2 et on note m=E(X) et $\sigma=\sigma(X)$.

$$\forall \varepsilon > 0, \quad P(|X - m| > \varepsilon) \leqslant P(|X - m| \geqslant \varepsilon) \leqslant \frac{\sigma^2}{\varepsilon^2}$$

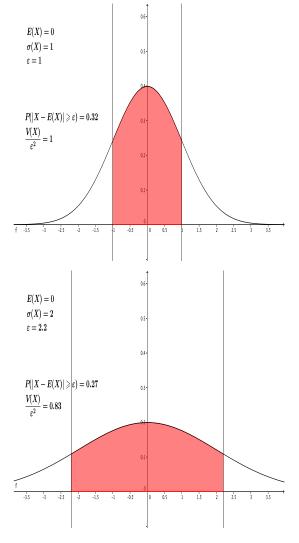
<u>Démonstration</u>:

L'inégalité de Bienaymé-Tchebytchev s'obtient en appliquant l'inégalité de Markov à la variable aléatoire $(X-E(X))^2$ et en remplaçant a par ϵ^2 .

XIII.4) Interprétation de cette inégalité et applications

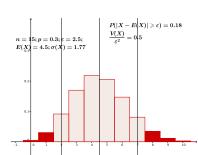
L'inégalité de Bienaymé-Tchebytchev ne dépend pas de la loi de X (seulement de son espérance et de sa variance), elle fournit un majorant assez grossier de $P(|X-E(X)| \ge \epsilon)$. Souvent, on reconnait qu'il faut se servir de l'inégalité de Bienaymé-Tchebychev grâce aux valeurs absolues présentes dans la probabilité. En général, il faudra y penser lorsque l'on doit établir des inégalités pour des probabilités d'événements concernant une variable dont on connait l'espérance et la variance.

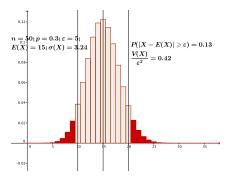
 $\mathbf{CAS}\ \mathbf{1}:$ Soit X une v.a.r. qui suit une loi normale centrée.



24

CAS 2 : Soit X une v.a.r. qui suit une loi binomiale,





Exercice 13 Soit $\lambda \in]0, +\infty[$. Soit X une variable aléatoire suivant une loi exponentielle de paramètre λ .

Montrer que
$$\forall \epsilon > 0, P\left(|X - \frac{1}{\lambda}| \ge \epsilon\right) \le \frac{1}{\lambda^2 \epsilon^2}$$
. En déduire que $P\left(X \ge \frac{3}{\lambda}\right) \le \frac{1}{4}$

Exercice 14

Montrer que, pour tout réel x strictement positif,

$$\int_0^x e^{-\frac{t^2}{2}} dt \ge \sqrt{\frac{\pi}{2}} \left(1 - \frac{1}{x^2} \right)$$