Exercices - Chapitre 7 - Variables à densité

Exercice 1

On considère la fonction F définie par F: $\mathbb{R} \to \mathbb{R}$ $x<1 \mapsto F(x)=0$ $x\geq 1 \mapsto F(x)=1-e^{2-2x}$

- 1. Montrer que F est une fonction de répartition d'une variable aléatoire à densité. On note X une variable aléatoire de fonction de répartition F.
- 2. Déterminer les probabilités suivantes $P(X \le 2)$, P(X > -2), $P\left(\frac{1}{2} < X \le 3\right)$, et $P_{[X \le 5]}(X \le 3)$.
- 3. On note $Y = \lfloor X \rfloor$. On admettra que Y est une variable aléatoire. Justifier que Y est une variable aléatoire discrète et calculer sa loi.
- 4. On note $Z = X \lfloor X \rfloor$. On admettra que Z est une variable aléatoire. Déterminer $Z(\Omega)$, puis la fonction de répartition de Z.

Exercice 2

1. Déterminer un réel a tel que la fonction $f: \mathbb{R} \to \mathbb{R}$ telle que

$$f: x \mapsto \left\{ \begin{array}{ll} 0 & \text{si} & x < 2 \\ \frac{a}{\ln^2(x)} & \text{si} & x \ge 2 \end{array} \right.$$

soit une densité de probabilité.

Dans toute la suite, on considère X une variable aléatoire admettant f comme densité.

- 2. Déterminer la fonction de répartition F de X.
- 3. La variable aléatoire X admet-elle une espérance ?
- 4. Calculer les probabilités $P(0 \le X \le 4)$ et $P(X \ge 5/2)$.

Exercice 3

On considère la fonction f définie suivante : $f: \ \mathbb{R} \ \to \ \mathbb{R}$ $x<0 \ \mapsto \ f(x)=e^x$ $x\geq 0 \ \mapsto \ f(x)=0$

- 1. Vérifier que f est une densité de probabilité. On note X une variable à densité de densité f.
- 2. Déterminer la fonction de répartition F_X de X.
- 3. Montrer que X admet une espérance et calculer cette espérance.
- 4. Montrer que X admet une variance et calculer cette variance.
- 5. On note $Y = X^2$ et on admet que Y est une variable aléatoire réelle.
 - (a) Déterminer la fonction de répartition de Y.
 - (b) Montrer que Y est une variable à densité et déterminer une densité de Y.
 - (c) Même question avec Z = 2X + 1.

Exercice 4

La loi de Cauchy

Soit a un réel. On note f la fonction définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $f(x) = \frac{a}{\pi(1+x^2)}$

- 1. Déterminer a pour que $\,f\,$ soit une densité de probabilité. Pour toute la suite de l'exercice on prendra cette valeur de a.
 - Soit X une variable aléatoire admettant f comme densité : on dit que X suit la loi de Cauchy

- 2. (a) Déterminer la fonction de répartition de X .
 - (b) Calculer les probabilités : $P(X \le 0)$, $P(X \ge 0)$, $P(X \le -1)$ et $P(X \ge 1)$.
 - (c) La variable aléatoire X admet-elle une espérance? Si oui, la calculer.
- 3. Soit Z une variable aléatoire suivant la loi uniforme sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$. On note $Y=\tan(Z)$ et on admettra que Y est une variable aléatoire.
 - (a) Montrer que Y suit la loi de Cauchy.
 - (b) En déduire un script en Python qui permet de simuler la loi de Cauchy.

 Ouel est le nom de la méthode que nous avons employé pour simuler la loi de Cauchy?

Exercice 5

Transformation d'une loi uniforme

Soit X une v.a.r. qui suit la loi uniforme de support [-3; 3]. On note $Y = X^2$. On admettra que Y est une v.a.r..

- 1. Rappeler une densité de X sa fonction de répartition, ainsi que la valeur de son espérance et de sa variance.
- 2. Déterminer la fonction de répartition de Y, puis montrer que Y est à densité .
- 3. Ecrire un programme Python qui simule Y .

Exercice 6

Transformée affine d'une loi uniforme

Soit X une v.a.r. qui suit une loi $\mathcal{U}_{-2,3}$. On note Y=-4X+7. On admettra que Y est une v.a.r..

- 1. Rappeler une densité de X, sa fonction de répartition, ainsi que les valeurs de son espérance et de sa variance
- 2. Justifier que Y est une variable à densité et déterminer une densité de Y.

Exercice 7

Autour de la loi exponentielle

Soit $\lambda > 0$. Soit X une v.a.r qui suit une loi $\mathscr{E}(\lambda)$ et $Z = X^2$. On admet que Z est une variable aléatoire réelle.

- 1. Rappeler une densité de X, sa fonction de répartition, ainsi que les valeurs de son espérance et de sa variance.
- 2. Vérifier que Z est une variable à densité et déterminer une densité de Z.

Exercice 8

Sur une loi petit gamma

Soit X une variable aléatoire qui suit une loi $\gamma(10)$.

1. Soit $Y = \ln(X)$.

Montrer que Y est une variable aléatoire à densité et donner une densité de Y.

2. On pose Z = |Y|.

Montrer que Z est une variable aléatoire à densité et donner une densité de Z.

Exercice 9

Loi petit gamma

Soit X une variable aléatoire suivant une loi gamma de paramètre μ . On suppose que $\mu > 0$.

- 1. Montrer que, pour tout entier naturel n, X admet un moment à l'ordre n et exprimer ce moment sous forme d'un produit en fonction de n et μ .
- 2. On note $Y = e^X$. On admet que Y est une variable aléatoire réelle.
 - (a) Justifier que Y est une variable à densité et déterminer une densité de Y.
 - (b) Montrer que Y n'a pas d'espérance.

Exercice 10

Lois normales

 Rappeler l'expression d'une densité d'une variable aléatoire suivant une loi normal centrée et de variance 0.5, puis en déduire la convergence et les valeurs des intégrales suivantes

$$I = \int_0^{+\infty} e^{-t^2} dt$$
 et $J = \int_0^{+\infty} t^2 e^{-t^2} dt$

- 2. Justifier que les intégrales suivantes existent et calculer ces intégrales.
- $K_1 = \int_0^{+\infty} e^{-\alpha t^2} dt \text{ avec } \alpha > 0$ $K_2 = \int_0^{+\infty} \frac{1}{\sqrt{t}} e^{-t} dt$ $K_3 = \int_0^{+\infty} e^{-\frac{3}{2}x^2} dx.$
- 3. Soient X et Y des variables aléatoires réelles indépendantes suivant toutes les deux une loi normale $\mathcal{N}(2, \frac{1}{2})$. Ouelle est la loi suivie par la variable 3X 5Y?

Exercice 11

Un produit de convolution On considère deux variables aléatoires réelles X et Y définies sur le même espace probabilisé (Ω, \mathcal{T}, P) indépendantes et suivant toutes la même loi exponentielle de paramètre 1.

- 1. Soit $t \in]0, +\infty[$.
 - Montrer que la variable Y-tX est une variable à densité et qu'elle admet pour densité l'application h définie par :

$$h(x) = \begin{cases} \frac{e^{-x}}{t+1} & \text{si } x > 0\\ \frac{e^{\frac{x}{t}}}{t+1} & \text{si } x \le 0 \end{cases}$$

- 2. On note $Z = \frac{Y}{X}$. En déduire la fonction de répartition de Z.
- 3. Déterminer la fonction de répartition de la variable aléatoire $T=\frac{X}{X+Y}$

Exercice 12

Lois de min et de Max

- 1. Soient X et Y deux variables aléatoires indépendantes définies sur le même espace probabilisé (Ω, \mathcal{T}, P) suivant une loi uniforme à densité de support $X(\Omega) = [0, 1]$.
 - On note Z la variable aléatoire définie par Z = Max(X, Y).
 - Justifier que Z est une variable à densité et déterminer une densité de Z.
- 2. Soient a et b des réels strictement positifs.
 - Soient X et Y deux variables aléatoires réelles indépendantes définies sur le même espace probabilisé (Ω) , \mathscr{T} , P) suivant toutes les deux des lois exponentielles de paramètres respectifs a et b.
 - On note T la variable aléatoire définie par T = Min(X, Y).
 - Justifier que T est une variable à densité et déterminer une densité de T. Reconnaître la loi suivie par T.

Exercice 13

Autour de la loi normale centrée réduite

Soit X une v.a.r qui suit une loi $\mathcal{N}(0,1)$.

Les questions suivantes sont indépendantes.

- 1. (a) Donner une valeur approchée de P(|X-0.96|<0.54) grâce à la table de Φ fournie dans le cours.
 - (b) Déterminer t > 0 tel que P(|X| < t) = 0.95
- 2. Montrer que : $\forall x \geq 0 \quad P(|X| \leq x) = 2\Phi(x) 1$.
- 3. On note Y = |X|. On admettra que Y est une variable aléatoire.
 - (a) En utilisant la fonction Φ , déterminer la fonction de répartition de Y puis montrer que Y est à densité.

3

- (b) Calculer E(Y)
- 4. On note $Z=X^2$. On admettra que X^2 est une v.a.r. Montrer que Z est une v.a.r. à densité et préciser une densité de Z.
- 5. On note $T = e^X$. On admettra que T est une v.a.r.
 - (a) Montrer que T est une v.a.r. à densité et préciser une densité de T.
 - (b) Montrer que T admet une espérance et calculer cette espérance.

Exercice 14

1. Montrer que l'intégrale $\int_{0}^{+\infty} x^2 e^{-x^2} dx$ est convergente et que $\int_{0}^{+\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}$

Soit
$$F$$
 la fonction définie sur $\mathbb R$ par :
$$\begin{cases} \forall x \leqslant 0, & F(x) = 0 \\ \forall x > 0, & F(x) = 1 - e^{-x^2} \end{cases}$$

- (a) Montrer que la fonction F définit une fonction de répartition d'une variable aléatoire à densité dont on déterminera une densité f.
 - (b) Soit X une variable aléatoire admettant f pour densité.
 - i. Montrer que X admet une espérance $E\left(X\right)$ et que $E\left(X\right)=\frac{\sqrt{\pi}}{2}$.
 - ii. Montrer que la variable aléatoire X^2 suit une loi exponentielle dont on précisera le paramètre.
 - iii. En déduire que X admet une variance et calculer cette variance.

Exercice 15

Loi exponentielle bilatérale

Soit f la fonction définie sur \mathbb{R} à valeurs réelles telle que $\forall x \in \mathbb{R}, f(x) = \frac{1}{2}e^{-|x|}$.

- 1. (a) Montrer que f est une fonction paire.
 - (b) Montrer que f est une densité de probabilité.

Dans la suite de l'exercice, on note Y une variable aléatoire à densité, de densité f.

- 2. Déterminer la fonction de répartition F_V de la variable aléatoire Y.
- 3. Etablir l'existence de l'espérance E(Y) et de la variance V(Y). Les calculer.
- 4. Soient Z_1 et Z_2 deux variables aléatoires réelles indépendantes suivant la même loi que Y. Justifier que la variable $Z_1 + Z_2$ est une variable à densité et déterminer une densité de $Z_1 + Z_2$.
- 5. On note Z = |Y|. On admet que Z est une variable aléatoire définie sur le même espace probabilisé que Y.
 - (a) Déterminer la fonction de répartition de Z. On la notera F_Z .
 - (b) Reconnaître la loi de Z puis en déduire l'espérance et la variance de Z.
- 6. Soient T_1 et T_2 deux variables aléatoires réelles définies sur le même espace probabilisé, indépendantes et suivant toutes les deux une loi exponentielle de paramètre 1.
 - (a) Justifier que la variable $-T_2$ est une variable à densité et déterminer une densité de $-T_2$.
 - (b) Montrer que la variable $T_1 T_2$ a la même loi que Y.
 - (c) Justifier que la variable T₁ − T₂ est centrée.
- 7. (a) Justifier que la fonction F_Y réalise une bijection. On notera F_Y^{-1} l'application réciproque de la fonction F_Y .
 - (b) Ecrire un programme en Python permettant de tracer les courbes représentatives de F_Y et de F_Y^{-1} pour x élément de [-2, 2].