Chapitre 9 - Algebre bilinéaire 11

.  Endomorphismes symétriques

Définition I.1
Soit E un espace euclidien. Un endomorphisme f de E est symétrique si :

V(z,y) € B, (f(x),y) = (=, f(y))

Remarque
Penser a vérifier d’abord que f est bien un endomorphisme !!

Exercice 1

1. Montrer qu’une homothétie d’un espace vectoriel euclidien est un endomorphisme symétrique.

2. On considére R* muni du produit scalaire canonique.
Soit u € RY, u = (1,0,1,0).
Soit f I'application qui & tout vecteur = de R* associe f(z) =z — 2 (z,u) .u
Montrer que f est un endomorphisme symétrique de (]R“7 (., ))

Exercice 2
Exercice de cours
Soit, f un endomorphisme symétrique de E. Montrer qu’alors Ker(f)* = Im(f).

Théoréme 1.2
Soit E un espace euclidien, f un endomorphisme symétrique de E. Soit F' un sous-espace vectoriel de
E. Si F est stable par f, alors le s.e.v. F- est stable par f.

Théoréme 1.3
Vecteurs propres, sous-espaces propres d’un endomorphisme symétrique
Soit E un espace euclidien. Soit f un endomorphisme symétrique de E et (\, ) € R2.

1. Si u est un vecteur propre associé & A\, v est un vecteur propre associé a p, et si A # pu, alors les
vecteurs u et v sont orthogonaux.

2. Si A\ # p, alors les sev Ker(f — Mdg) et Ker(f — pldg) sont orthogonaux.

3. Les sous-espaces propres de ’endomorphisme symétrique f sont deux a deux or-
thogonaux.

4. Une famille de vecteurs propres associés a des valeurs propres deux a deux distinctes est orthog-
onale.

Proposition 1.1

Caractérisation dans une base

Soit E est un espace euclidien de dimension n > 1. Soit (e, es,...,€,) une base de E.
Soit f un endomorphisme de E.

[ est symétrique si et seulement si

V(i 5) € [[Lnl?, (fled),e) = {eis £le)))

Théoréme 1.1
Matrice dans une BON
Soit E un espace euclidien, muni d’'une BON B. Soit f un endomorphisme de E. Alors

f est un endomorphisme symétrique < sa matrice Matg(f) est symétrique

Exercice 3

1. Déterminer la matrice dans la base canonique de R* de I’endomorphisme f défini dans ’Exemple 2.

ci-dessus.
2. On considére I’application g définie sur R® par

g(@,y,2) = e+y+z,2+2y+z,x+y+2z2)

On admet que g est un endomorphisme de R3. Vérifier qu'’il s’agit d’un endomorphisme symétrique.
que g b q g P Y q
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Exercice 4

Soit f l'application qui & tout vecteur z de R* associe f(x) =z — 2. (z,u) .u ot u = (1,0, 1,0).

On a montré que f est un endomorphisme symétrique de R*.et on a déja déterminé la matrice de f dans
la base canonique de R*.

Calculer les valeurs propres et les sous-espaces propres de f.

Théoréme 1.4
Orthodiagonalisation d’un endomorphisme symétrique (Admis)
Soit E un espace euclidien. Soit f un endomorphisme symeétrique de E. Alors

1. f admet au moins une valeur propre.

2. il existe une BON B’ = (e, - ,¢},) de E formée de vecteurs propres de f.
3. f est diagonalisable.

4. En notant Yk € [[1,n]], f(e},) = Ax-€}, et D = Diag(Ay,--- , A,), alors

Matg (f) =D

Remarque
Pour former la base B/, il suffit de concaténer des BON des sous-espaces propres.
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II.  Matrices symétriques réelles et orthodiagonalisation

Rappel : M, 1(R) est muni du produit scalaire canonique, défini par :

€ Y1 n
VX=| 1| €dar(®R), VY =] | ethr(R), (X,¥V)='XY =D apy

Tn Yn k=1

Théoréme II1.1

Orthodiagonalisation des matrices symétriques

Soit n € N, n > 2.

Soit A une matrice symétrique, c’est-a-dire que A € M, (R) et ‘A = A. Alors

1. A admet au moins une valeur propre.
2. A est diagonalisable.
3. Il existe une matrice orthogonale P (avec P~ = ‘P) telle que
P7'AP = 'PAP = D = Diag(\1,--- , \)
On dit que A est orthodiagonalisable.

4. Les sous-espaces propres de A sont deux a deux orthogonaux pour le produit scalaire canonique

de Mn,l (R)

5. En concaténant des BON de chaque sous-espace propre de A, on obtient une BON (X7, -+, X,,)
de M, 1(R) et la matrice P = (X;|---|X,,) diagonalise A.

Preuve
On applique le Théoréme 1.4 a endomorphisme f de R™ qui est canoniquement associée a la matrice A.

Rappel
On note S, (R) = {4 € M, (R)/ A= A}. Alors S, (R) est un s.e.v de M, (R).

De plus dim(S,(R)) = 25,
Reprise exercice 4 : orthodiagonaliser la matrice A associée a f.

Exercice 5 2
1. Onnote M = | 1

Justifier que M est diagonalisable. Déterminer une matrice P orthogonale et une matrice D diagonale
telle que M = PD'P

2 0 1
2. Onnote A=[0 2 -1
1 -1 1

Justifier que la matrice A est orthodiagonalisable et orthodiagonaliser la matrice A

3. Soit A € M, (R) une matrice symétrique.
Montrer que si pour tout vecteur colonne X non nul: (AX,X) > 0, alors les valeurs propres de A
sont strictement positives.
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Une premiére approche des formes quadratiques :

Définition II.1
Soit n € N* et A € M,,(R) une matrice symétrique. L’application

qa: Mya(R) — R
x
X=|: - IX.AX

Tn

est appelée forme quadratique de R™ associée a A.

Exemple 2
Soit A=(0 2 -1
1 -1 1

1. Déterminer la forme quadratique associée a A.

2. Etudier le signe de cette forme quadratique

III.  Projection orthogonale

Rappels sur les projections

II1.1 ) Définition et propriétés

Définition III.1
Soit, E un espace euclidien.
Soit F un sous espace vectoriel de E. On sait que F&F = E.

On la note pp.

On appelle projection orthogonale sur F, la projection sur F' parallélement & F*.

Proposition ITI.1
Soit pr la projection orthogonale sur F'. Alors

o F=Im(pr) = Ker(Idg — pr)
e Ker(pp) = F*. Donc Ker(pp)* = F = Im(pr).
® pr+ppr =Idg

® ppoppL =ppropr =0
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Proposition III.2
p est un projecteur orthogonal de E si et seulement si :

1. p est un endomorphisme de E.
2. pop=p
3. Ker(p)LIm(p)

Remarque
Sip# Idg et p # 0z(g), comme pour tout projecteur : Spec(p) = {0,1} et p est diagonalisable.

Remarque
Sip=0gm) alors p = pgo,y-
Sip = Idg alors p = pg.

Théoréme III1.1
Soit, E un espace euclidien.

p est un endomorphisme symétrique de F

» est un projecteur orthogonal de F &
). proj =4 { pop=p

Théoréme II1.2
Caractérisation du projeté orthogonal d’un vecteur
Soit £ un espace euclidien.
1. Soit F un sevde F, u € E et v € E. Alors
‘U:pF(U)¢>UE Fetu—ve FL‘

2. Supposons que F = Vect(ey, - ,en). Soit u € E et v € E. Alors

veF
UZPF(U)@{ Vk e [[1,m]], (u—v) L e

Exercice 6 1
Dans R[X]| muni du produit scalaire (P, Q) — / P(t)Q(t)dt, déterminer le projeté orthogonal de X?
0

sur Pespace vectoriel Ry [X].

Théoréme IT1.3
Caractérisation connaissant une BON de F
Soit E un espace euclidien. Soit F' un sev de E muni d'une BON (uy, -+, u,,). Alors

Ve e E, pp(z)= Z (@, k) up
k=1

Exercice 7
1. On travaille dans R* muni du p.s. canonique.
On considére le sous-espace vectoriel F' = {(x1,72,23,24) € R, o1 + 22 = Oet x1 + 23 = 0}.
Déterminer le projeté orthogonal de (1,2,1,0) sur F.
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2. Dans R™ muni du produit scalaire canonique, déterminer le projeté orthogonal de (1,---,1)
sur F = Vect ((1,0,»»- ,0,1),(2,1,0,- - ,0.1,2))

Détermination en pratique d’une projection orthogonale

1. Méthode 1 : Dans le cas ou 'on connait une base orthonormée de F, on peut utiliser le théoréme
ci-dessus.

2. Méthode 2 : Lorsque le sous-espace vectoriel F' et le vecteur u sont donnés, on peut calculer pp(u)
en utilisant les deux propriétés : pp(u) € F et u — pp(u) € F*.

3. Méthode 3 : On utilisera parfois que pp = Idg — ppr.

Exercice 8
Dans I'espace R? muni du produit scalaire canonique, on note a = (-2, 1,1,3).
On note aussi u; = (1,2,0,-2) et us = (2,0, —-2,1) et F = vect(uy,us).

1. Déterminer le projeté orthogonal de a sur F' par la méthode 2.

2. Déterminer une base orthonormale de F.
Retrouver le projeté orthogonal de a sur F' par la méthode 1.

3. Déterminer la matrice dans la base canonique de R* du projecteur orthogonal sur F.

II1.2 ) Matrice d’un projecteur orthogonal

Théoréme II1.4

Matrice dans une BON

Soit E un espace euclidien. Soit p un endomorphisme de E et C = (ey, - -+ , €,) une BON de E. Notons
A = Matc(p). Alors

p est un projecteur orthogonal < A2 =Aet ‘A=A

Exercice 9
Dans R? muni du produit scalaire canonique, on considére ’endomorphisme f associé canoniquement 2 la

05 0 —05
matrice suivante. A = 0 0 0 . Montrer que f est un projecteur orthogonal.
-05 0 0.5

II1.3 ) Minimisation par projection orthogonale

Théoréme IIL.5

Théoréme de minimisation par projection orthogonale

Soit E un e.v. euclidien de dimension n > 1.

Soit F' un sev de E et a € E un vecteur fixé. Soit pp la projection orthogonale sur F.

e L’application h : FF — R, telle que h(z) = ||a — z|| admet un minimum absolu, atteint unique-
ment en pp(a).

e Autrement dit, mingep ||a — z|| = |la — pr(a)].
Ce minimum est atteint uniquement en z = prp(a).

Remarque
Soit y € F. On a donc y = pp(a) ssi minger |la — z|| = |la — y|| qui est égale a la "distance de a & F".
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Meéthode d’utilisation du théoréme de minimisation par projection orthogonale

Pour utiliser le théoréme de minimisation par projection orthogonale :
e Etape 1 : On définit un espace F' et un vecteur a.

e Etape 2 : On reconnait une écriture de la forme ||a — y|| ou le vecteur y est un vecteur quelconque
du sous-espace vectoriel F.

e Etape 3 : On calcule pp(a).

e Etape 4 : On calcule ||ja — pp(a)|| car le théoréme assure que ensemble {||a — ul| tel que u € F} a
un minimum et que ce minimum vaut ||la — pr(a)||.

Exercice 10
1. Dans R® muni du produit scalaire canonique, déterminer la distance de (1,2,3) a

F={(z,y,2) €R® x+y+2=0}

1
2. Déterminer le minimum de / (t* — at — b)?dt quand a et b décrivent R.

0
(on utilisera les résultats de exercice 6).

3. Déterminer le minimum de la fonction h définie sur R? par :

hzy)=(@+y—10°+ Qe —y—1)°+(y—1)°

II1.4 ) Pseudo-solution et probléme des moindres carrés

Théoréme IIL.6

Soit A une matrice de M, ,(R) de rang p. Soit B une matrice colonne de M, 1(R), ou M, 1(R) est
muni du produit scalaire canonique.

Alors I'application h : My, 1(R) — R, telle que h(X) = [|A.X — B| admet un minimum absolu strict :
il existe une unique matrice colonne Xy de M, 1(R) qui rende minimale la quantité ||AX — B|| quand
X parcourt M1 (R).

Notons Yy € M,, 1(R) le projeté orthogonal de B sur Im(A) = F sev de M,, 1(R). Ce minimum est
atteint au seul point Xy tel que Yy = AXj.

On dit que X est une pseudo-solution de I’équation AX = B.

Lien avec le probléme des moindres carrés :

Etant données deux séries statistiques z = (21, ,2,) et y = (y1, -+ ,Yn), on cherche deux réels a
et b tels que la quantité
n
8= "(yi — az; — b)?
i=1

soit minimale (cf TD Python). La droite d’équation y = ax + b est alors appelée droite de régression.

Notons
(8 xrp 1
Y2 T2 1
B= X = (a) A=|"
b :
Yn T, 1

Alors on remarque que S = ||B — AX|)* = |AX — B|*.
a

b> telle que S soit minimale.

D’apreés le Th. IIL.6, il existe donc bien une unique matrice X = (

Nous verrons dans le chapitre sur les fonctions de n variables comment calculer a et b.
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