
Chapitre 9 - Algèbre bilinéaire II

I. Endomorphismes symétriques

Définition I.1
Soit E un espace euclidien. Un endomorphisme f de E est symétrique si :

∀(x, y) ∈ E2, 〈f(x), y〉 = 〈x, f(y)〉

Remarque
Penser à vérifier d’abord que f est bien un endomorphisme !!

Exercice 1
1. Montrer qu’une homothétie d’un espace vectoriel euclidien est un endomorphisme symétrique.

2. On considère R4 muni du produit scalaire canonique.
Soit u ∈ R4, u = (1, 0, 1, 0).
Soit f l’application qui à tout vecteur x de R4 associe f(x) = x− 2 〈x, u〉 .u
Montrer que f est un endomorphisme symétrique de

(
R4, 〈., .〉

)
Exercice 2
Exercice de cours
Soit f un endomorphisme symétrique de E. Montrer qu’alors Ker(f)⊥ = Im(f).

Proposition I.1
Caractérisation dans une base
Soit E est un espace euclidien de dimension n > 1. Soit (e1, e2, . . . , en) une base de E.
Soit f un endomorphisme de E.
f est symétrique si et seulement si

∀(i, j) ∈ [[1, n]]2, 〈f(ei), ej〉 = 〈ei, f(ej)〉

Théorème I.1
Matrice dans une BON
Soit E un espace euclidien, muni d’une BON B. Soit f un endomorphisme de E. Alors

f est un endomorphisme symétrique ⇔ sa matrice MatB(f) est symétrique

Exercice 3
1. Déterminer la matrice dans la base canonique de R4 de l’endomorphisme f défini dans l’Exemple 2.

ci-dessus.

2. On considère l’application g définie sur R3 par

g(x, y, z) = (2x+ y + z, x+ 2y + z, x+ y + 2z)

On admet que g est un endomorphisme de R3. Vérifier qu’il s’agit d’un endomorphisme symétrique.
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Théorème I.2
Soit E un espace euclidien, f un endomorphisme symétrique de E. Soit F un sous-espace vectoriel de
E. Si F est stable par f , alors le s.e.v. F⊥ est stable par f .

Théorème I.3
Vecteurs propres, sous-espaces propres d’un endomorphisme symétrique
Soit E un espace euclidien. Soit f un endomorphisme symétrique de E et (λ, µ) ∈ R2.

1. Si u est un vecteur propre associé à λ, v est un vecteur propre associé à µ, et si λ 6= µ, alors les
vecteurs u et v sont orthogonaux.

2. Si λ 6= µ, alors les sev Ker(f − λIdE) et Ker(f − µIdE) sont orthogonaux.

3. Les sous-espaces propres de l’endomorphisme symétrique f sont deux à deux or-
thogonaux.

4. Une famille de vecteurs propres associés à des valeurs propres deux à deux distinctes est orthog-
onale.

Exercice 4
Soit f l’application qui à tout vecteur x de R4 associe f(x) = x− 2. 〈x, u〉 .u où u = (1, 0, 1, 0).
On a montré que f est un endomorphisme symétrique de R4.et on a déjà déterminé la matrice de f dans
la base canonique de R4.
Calculer les valeurs propres et les sous-espaces propres de f .

Théorème I.4
Orthodiagonalisation d’un endomorphisme symétrique (Admis)
Soit E un espace euclidien. Soit f un endomorphisme symétrique de E. Alors

1. f admet au moins une valeur propre.

2. il existe une BON B′ = (e′1, · · · , e′n) de E formée de vecteurs propres de f .

3. f est diagonalisable.

4. En notant ∀k ∈ [[1, n]], f(e′k) = λk.e
′
k et D = Diag(λ1, · · · , λn), alors

MatB′(f) = D

Remarque
Pour former la base B′, il suffit de concaténer des BON des sous-espaces propres.
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II. Matrices symétriques réelles et orthodiagonalisation

Rappel : Mn,1(R) est muni du produit scalaire canonique, défini par :

∀ X =

x1...
xn

 ∈Mn,1(R), ∀ Y =

y1...
yn

 ∈Mn,1(R), 〈X,Y 〉 =t X.Y =
n∑

k=1

xkyk

Théorème II.1
Orthodiagonalisation des matrices symétriques
Soit n ∈ N, n ≥ 2.
Soit A une matrice symétrique, c’est-à-dire que A ∈Mn(R) et tA = A. Alors

1. A admet au moins une valeur propre.

2. A est diagonalisable.

3. Il existe une matrice orthogonale P (avec P−1 = tP ) telle que

P−1AP = tPAP = D = Diag(λ1, · · · , λn)

On dit que A est orthodiagonalisable.

4. Les sous-espaces propres de A sont deux à deux orthogonaux pour le produit scalaire canonique
deMn,1(R).

5. En concaténant des BON de chaque sous-espace propre de A, on obtient une BON (X1, · · · , Xn)
deMn,1(R) et la matrice P = (X1| · · · |Xn) diagonalise A.

Preuve
On applique le Théorème I.4 à l’endomorphisme f de Rn qui est canoniquement associée à la matrice A.

Rappel
On note Sn(R) = {A ∈Mn(R)/ tA = A}. Alors Sn(R) est un s.e.v deMn(R).
De plus dim(Sn(R)) = n(n+1)

2 .

Reprise exercice 4 : orthodiagonaliser la matrice A associée à f .

Exercice 5
1. On note M =

2 1 1
1 2 1
1 1 2

.

Justifier queM est diagonalisable. Déterminer une matrice P orthogonale et une matriceD diagonale
telle que M = PD tP

2. On note A =

2 0 1
0 2 −1
1 −1 1

.

Justifier que la matrice A est orthodiagonalisable et orthodiagonaliser la matrice A

3. Soit A ∈Mn(R) une matrice symétrique.
Montrer que si pour tout vecteur colonne X non nul: 〈AX,X〉 > 0, alors les valeurs propres de A
sont strictement positives.
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Une première approche des formes quadratiques :

Définition II.1
Soit n ∈ N∗ et A ∈Mn(R) une matrice symétrique. L’application

qA :Mn,1(R) → R

X =

 x1
...
xn

 7→ tX.A.X

est appelée forme quadratique de Rn associée à A.

Exemple
Soit A =

2 0 1
0 2 −1
1 −1 1

.

1. Déterminer la forme quadratique associée à A.

2. Etudier le signe de cette forme quadratique

III. Projection orthogonale

Rappels sur les projections

III.1 ) Définition et propriétés

Définition III.1
Soit E un espace euclidien.
Soit F un sous espace vectoriel de E. On sait que F⊕F⊥ = E.
On appelle projection orthogonale sur F , la projection sur F parallèlement à F⊥.
On la note pF .

Proposition III.1
Soit pF la projection orthogonale sur F . Alors

• F = Im(pF ) = Ker(IdE − pF )

• Ker(pF ) = F⊥. Donc Ker(pF )⊥ = F = Im(pF ).

• pF + pF⊥ = IdE

• pF ◦ pF⊥ = pF⊥ ◦ pF = 0
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Proposition III.2
p est un projecteur orthogonal de E si et seulement si :

1. p est un endomorphisme de E.

2. p ◦ p = p

3. Ker(p)⊥Im(p)

Remarque
Si p 6= IdE et p 6= 0L(E), comme pour tout projecteur : Spec(p) = {0, 1} et p est diagonalisable.

Remarque
Si p = 0L(E) alors p = p{0E}.
Si p = IdE alors p = pE .

Théorème III.1
Soit E un espace euclidien.

p est un projecteur orthogonal de E ⇔
{
p est un endomorphisme symétrique de E
p ◦ p = p

Théorème III.2
Caractérisation du projeté orthogonal d’un vecteur
Soit E un espace euclidien.

1. Soit F un sev de E, u ∈ E et v ∈ E. Alors
v = pF (u)⇔ v ∈ F et u− v ∈ F⊥

2. Supposons que F = V ect(e1, · · · , em). Soit u ∈ E et v ∈ E. Alors

v = pF (u)⇔
{
v ∈ F
∀k ∈ [[1,m]], (u− v) ⊥ ek

Exercice 6
Dans R2[X] muni du produit scalaire (P,Q) 7−→

∫ 1

0

P (t)Q(t)dt, déterminer le projeté orthogonal de X2

sur l’espace vectoriel R1[X].

Théorème III.3
Caractérisation connaissant une BON de F
Soit E un espace euclidien. Soit F un sev de E muni d’une BON (u1, · · · , um). Alors

∀x ∈ E, pF (x) =
m∑

k=1

〈x, uk〉 .uk

Exercice 7
1. On travaille dans R4 muni du p.s. canonique.

On considère le sous-espace vectoriel F = {(x1, x2, x3, x4) ∈ R4, x1 + x2 = 0 et x1 + x3 = 0}.
Déterminer le projeté orthogonal de (1, 2, 1, 0) sur F .
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2. Dans Rn muni du produit scalaire canonique, déterminer le projeté orthogonal de (1, · · · , 1)
sur F = Vect

(
(1, 0, · · · , 0, 1), (2, 1, 0, · · · , 0, 1, 2)

)
Détermination en pratique d’une projection orthogonale

1. Méthode 1 : Dans le cas où l’on connait une base orthonormée de F , on peut utiliser le théorème
ci-dessus.

2. Méthode 2 : Lorsque le sous-espace vectoriel F et le vecteur u sont donnés, on peut calculer pF (u)
en utilisant les deux propriétés : pF (u) ∈ F et u− pF (u) ∈ F⊥.

3. Méthode 3 : On utilisera parfois que pF = IdE − pF⊥ .

Exercice 8
Dans l’espace R4 muni du produit scalaire canonique, on note a = (−2, 1, 1, 3).
On note aussi u1 = (1, 2, 0,−2) et u2 = (2, 0,−2, 1) et F = vect(u1, u2).

1. Déterminer le projeté orthogonal de a sur F par la méthode 2.

2. Déterminer une base orthonormale de F .
Retrouver le projeté orthogonal de a sur F par la méthode 1.

3. Déterminer la matrice dans la base canonique de R4 du projecteur orthogonal sur F .

III.2 ) Matrice d’un projecteur orthogonal

Théorème III.4
Matrice dans une BON
Soit E un espace euclidien. Soit p un endomorphisme de E et C = (e1, · · · , en) une BON de E. Notons
A =MatC(p). Alors

p est un projecteur orthogonal ⇔ A2 = A et tA = A

Exercice 9
Dans R3 muni du produit scalaire canonique, on considère l’endomorphisme f associé canoniquement à la

matrice suivante. A =

 0.5 0 −0.5
0 0 0
−0.5 0 0.5

. Montrer que f est un projecteur orthogonal.

III.3 ) Minimisation par projection orthogonale

Théorème III.5
Théorème de minimisation par projection orthogonale
Soit E un e.v. euclidien de dimension n ≥ 1.
Soit F un sev de E et a ∈ E un vecteur fixé. Soit pF la projection orthogonale sur F .

• L’application h : F → R, telle que h(x) = ‖a− x‖ admet un minimum absolu, atteint unique-
ment en pF (a).

• Autrement dit, minx∈F ‖a− x‖ = ‖a− pF (a)‖.
Ce minimum est atteint uniquement en x = pF (a).

Remarque
Soit y ∈ F . On a donc y = pF (a) ssi minx∈F ‖a− x‖ = ‖a− y‖ qui est égale à la "distance de a à F".
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Méthode d’utilisation du théorème de minimisation par projection orthogonale

Pour utiliser le théorème de minimisation par projection orthogonale :

• Etape 1 : On définit un espace F et un vecteur a.

• Etape 2 : On reconnait une écriture de la forme ||a − y|| où le vecteur y est un vecteur quelconque
du sous-espace vectoriel F .

• Etape 3 : On calcule pF (a).

• Etape 4 : On calcule ||a− pF (a)|| car le théorème assure que l’ensemble {||a− u|| tel que u ∈ F} a
un minimum et que ce minimum vaut ||a− pF (a)||.

Exercice 10
1. Dans R3 muni du produit scalaire canonique, déterminer la distance de (1, 2, 3) à

F = {(x, y, z) ∈ R3, x+ y + z = 0}.

2. Déterminer le minimum de
∫ 1

0

(t2 − at− b)2dt quand a et b décrivent R.

(on utilisera les résultats de l’exercice 6).

3. Déterminer le minimum de la fonction h définie sur R2 par :

h(x, y) = (x+ y − 1)2 + (2x− y − 1)2 + (y − 1)2

III.4 ) Pseudo-solution et problème des moindres carrés

Théorème III.6
Soit A une matrice deMn,p(R) de rang p. Soit B une matrice colonne deMn,1(R), oùMn,1(R) est
muni du produit scalaire canonique.
Alors l’application h :Mp,1(R)→ R, telle que h(X) = ‖A.X −B‖ admet un minimum absolu strict :
il existe une unique matrice colonne X0 deMp,1(R) qui rende minimale la quantité ‖AX −B‖ quand
X parcourtMp,1(R).
Notons Y0 ∈ Mn,1(R) le projeté orthogonal de B sur Im(A) = F sev deMn,1(R). Ce minimum est
atteint au seul point X0 tel que Y0 = AX0.
On dit que X0 est une pseudo-solution de l’équation AX = B.

Lien avec le problème des moindres carrés :

Etant données deux séries statistiques x = (x1, · · · , xn) et y = (y1, · · · , yn), on cherche deux réels a
et b tels que la quantité

S =
n∑

i=1

(yi − axi − b)2

soit minimale (cf TD Python). La droite d’équation y = ax+ b est alors appelée droite de régression.

Notons

B =


y1
y2
...
yn

 , X =

(
a
b

)
, A =


x1 1
x2 1
...

...
xn 1


Alors on remarque que S = ‖B −AX‖2 = ‖AX −B‖2.

D’après le Th. III.6, il existe donc bien une unique matrice X =

(
a
b

)
telle que S soit minimale.

Nous verrons dans le chapitre sur les fonctions de n variables comment calculer a et b.
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