donc vy € (Ep(g))*. D’aprés le cours, comme dim(Ey(g)) = 1, on a dim(Ep(g)*) = 3—1 = 2.

c Considérons par exemple le vecteur v3 = -=.(1,—1,1). Alors vs est un vecteur normé, qui
Corrigé du DS n°5 - 14/01,/2026 par exemple le vectenr vs = (1, =1, 1) 3 st v 4
est orthogonal a vy, donc vy € Ep(g)~. De plus, les vecteurs vg et vg sont orthogonaux,
donc forment une famille orthonormée donc libre. Cette famille étant de cardinal 2, il s’agit
d’une base de Ey(g)*.

‘Exercice 1 ("Sujet 0", Ecricome 2023) ‘ Bilan : la famille (v2,v3) ou vy = ﬁ(q,o, 1) et v3 = %.(1,71,1) est une BON de
(Eo(g9))*
6. La famille C = (v1,v2,v3) est une famille orthonormeée de ]R3, il s’agit donc d’une famille
1. On obtient par le calcul libre. Etant de cardinal 3, c’est une base de R?. Ainsi C est une BON de E. Dans cette
-5 2 1 base : g(v1) =0 car v1 € Ker(g).
Ar=[2 -2 2
1 2 -5 1 -1 1
. A—= |0 ]|=v2|-1
e 0 6 —12 V2 1
A3 I
6 0 6 donc g(v2) = v6.v3
12 -6 0
1 1 1 3 1
On a donc A% = —6.A. En notant o = \/é7 on a alors m A— |-1)=— (0] =v3.[ 0
V3 \ 1 3 \3 -1
2
p . . donc g(v3) = —V6.v3.
2. Déter s 1 au de A. Soit X = R). Alors
CLErImons fe noyau de o Zz/ € Ma1(R). Alors Finalement, la matrice dans la BON C de g est :
y+22=0 0 0 0
. - z
= Mat, = —/6
XeKer(A) o AX =004 220 o972 ox— |2 ate(g) = {0 0 ~V6
T =2z 0 v6 0
—2rx+y=0 z
1
Ainsi Ker(A) = Vect(| 2 t donce K =Vect((1,2,1)). C Ker 0}, 0 est
insi Ker(4) ect( 1 ) et done Ker(g) ect((1,2,1)). Comme Ker(g) # {0}, 0 es 1. Pour tout endomorphisme f de E, montrons que les deux propriétés (P;) et (P) ci-dessous

bien une valeur propre de g. sont équivalentes :
I(1,2,1)]| = vI+4+1= 6. Notons v; = \%.(1, 2,1). Le vecteur vy est alors de norme 1

(Pl) : VTGE,<f(fI?),7?>:O
et la famille (v1) est une base de Ker(g) = Ey(g).

(P2) = V(z,y) € E* (f(2),y) = = (z, f(y))
3. Le polynéme P(z) = 23 + o®.x est annulateur de A d’aprés la question 1.

Comme P(z) = z(2? + a?), ce polynome a pour unique racine 0. D’aprés le cours, e Supposons que la propriété (P2) est vraie. Alors, pour tout € F, en prenant r =y :
Sp(A) C {racines de P} (f@),z) = —(z, f(2)) & 2(z, f(z)) =0 & (f(z),2) =0
donc Sp(A) € {0}. Finalement, | Sp(g) = Sp(A) = {0} ‘ donc la propriété (Py) est vraie.

o Supposons que la propriété (Py) est vraie. Soit (z,y) € E2. On a alors :

4. Comme 0 € Sp(g), | g n'est pas bijectif | De plus,

(flz+y),z+y)=0 = (f(x)+ f(y),z+y) =0 par linéarite de f
> dim(Ker(g — A\.Id)) = dim(Ker(g)) =1 # 3 = (f@),2) + {f(@),y) + (fW)z) + (f(y),y) =0
AeSp(9) = (f(2),y) + (f(y),x) =0 dapres (P1)
= (f@),y) = (=, f(v)

donc | g n’est pas diagonalisable‘

donc la propriété (Ps) est vraie.
5. On pose vg = %(—1,07 1).

e Bilan : ‘par double implication, (P) < (P;) ‘

<U17U2> = <(1,2-,1);(_1,07 1)> =0

1

Sl
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T
2. Soit u € R, u = (z,y,2), X = Matg(u) = [ y |. Comme la base canonique de R? est une
z

BON de R? pour le p.s. canonique,

y—2z
(g(u),u) = "(AX).X = XX = (wy2). [ —v+ 2 | =2ay—2z2—ay+yz+202—yz =0
2r —y

Donc ‘ I’endomorphisme ¢ défini dans la partie précédente est anti-symétrique

3. On veut démontrer par I’absurde que f n’est pas bijective.
On suppose donc que f est bijective.
Soit & un vecteur non nul de E et soit F' le sous-espace vectoriel de FE engendré par x et

1),
(a) Montrons que la famille (z, f(z)) est libre. Soit (o, 8) € R? tels que
az+p.f(z)=0
Alors en prenant le produit scalaire avec x :
(z,a.x+ B.f(x)) =0< a.(z,2) + B. (z, f(x)) =0

D’aprés la propricté (P1), (z, f(z)) = 0, donc a. ||z]|* = 0. Comme z # O, |«|| > 0,
donc o = 0. Enfin, comme [ est supposée bijective, Ker(f) = {0g}. Comme z # O,
z ¢ Ker(f) donc f(z) # 0. Finalement, comme f.f(z) =0, on a = 0.

Ainsi, « = =0 la famille (z, f(z)) est libre.

Comme F' = Vect(z, f(z)) on a donc |dim(F) = 2

On sait déja d’aprés la propriété (Pp) que z et f(z) sont orthogonaux. Comme
dim(F) = 2, on a dim(F*) = 3 -2 = 1. Soit y un vecteur non nul de F. Alors
y est orthogonal & z et a f(x). Donc la famille (z, f(x),y) est orthogonale.

Montrons que la famille (z, f(2),y, f(y)) est libre. Soit (a, 3,7, 0) € R?* tels que

=

—
o
N

az+p.f(x) +vy+d.fly)=0

En calculant le produit scalaire de ce vecteur avec y, comme (z,y) = (f(z),y) =
(f(y),y) =0, on obtient v = 0.
Puis en calculant le produit scalaire de a.x + B.f(z) + 8.f(y) = 0 avec z :

a (@) +6(f(y),2) =0 a.|z]* =5 (y. f(z)) =0 & a.|z)* =0 a =0

en utilisant (Py).

Reste .f(x) +6.f(y) = 0 & f(B.x + d.y) = 0. Comme Ker(f) = {0}, on alors
B.x+0.y =0. Comme z et y sont deux vecteurs orthogonaux non nuls, ils forment une
famille libre et donc enfin 8 =6 = 0.

Bilan : ‘la famille (z, f(z),y, f(y)) est libre‘

e

La famille (z, f(z),y, f(y)) est une famille libre de cardinal 4 dans un espace de di-
mension 3 : c’est absurde !

Donc notre hypothése initiale est fausse : ‘si f est anti-symétrique alors f n’est pas bijective

4. Comme f n’est pas bijective, Ker(f) # {0g}. Soit €] un vecteur non nul de Ker(f). Quitte
a le normer, on peut supposer que |l¢j|| = 1. D’aprés le théoréme de la base orthonormée
incomplete, il existe alors des vecteurs €5, €5 de E tels que la famille B’ = (e, €5, €5) est une
base orthonormale de E.
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5. (a) Comme B’ est une BON, on a :
/ / / / /

1 2),€1 3), €1
A=Matp(f) = | (f(e1).€5) (f(€),€5) (f(e3),er)

/ / / / /

2),€3 3),€3

D’aprés (Py), pour tout (4, ) € [[1,3]]?,
(‘A)ig = (A)ja = (f(e). €f) = — (i, f(€f)) = —(A)ij

donc ‘A = —A : la matrice représentative de f dans la base B est anti-symétrique.

(b) Comme f(e}) =0 et comme (f(e}),eh) = (f(e}),e4) = 0, on peut dire que

0 (fleh),er) (f(ey) er)
A=10 0 (f(€hs), eh)
0 (f(eh),e5) 0
et par antisymétrie de A, en notant o = (f(e5), e5):
00 O
A=10 0 -«
0 a 0

Pour conclure, nous avons bien montré que pour tout endomorphisme antisymétrique
de R3, il existe une BON de R? dans laquelle

00 O
Matg(f)=A=[0 0 —«
0 a O

‘Exercice 2 : Edhec 2023‘

On désigne par ¢ un réel strictement supérieur a 2 et on suppose que toutes les variables aléatoires
rencontrées dans cet exercice, sont définies sur le méme espace probabilisé.

Partie 1 : étude d’une loi de probabilité‘

sixz>1

C
On considére la fonction f définie par: f(z) = { 160“ szl

1. La fonction f est positive sur R, et continue sur R \ {1}. Ensuite,

+oo‘ rtoo
/700 f(t)dt:/1 et

On reconnait une intégrale de Riemann, qui converge car ¢+ 1 > 3 > 1. Posons A > 1.

A ¢ A 1 A 1
— — —C— —_ —C —
IAf/l —tmdtf/1 et Tt = [~ =1 - a1

Donc [*2° f(t)dt = [[7° 2Srdt = 1.

e

Bilan : ‘ f est une densité de probabilité‘

On considére dans la suite une variable aléatoire X telle que X (2) = [1, +oo[, de densité f
et on note F sa fonction de répartition. On dit que X suit la loi de Pareto de paramétre c.
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2. e X admet une espérance si et seulement si l'intégrale suivante est (absolument) conver- (b) On en déduit que si z < 0, comme e” < 1, G(z) =0. Si z >0,
gente (la fonction est positive) :

1 _
too 1 G(z):F(egc)zl—wzl—eC:‘c
/ t.f(t)dt = c. /+mt7dt
v /1 On reconnait la fonction de répartition d’'une loi exponentielle de paramétre ¢ !

On reconnait une intégrale de Riemann, qui converge car ¢ > 2 > 1. Donc E(X) existe. Bilan : |Y < &(c)

Posons encore A > 1 : . . .
- (¢) Comme Y =1In(X), on a aussi X = ¢¥. Nous allons donc simuler Y et en déduire une

A A o
1 . 1 , 1 1 1 simulation de X.
Ja =/ —dt = / tedt = [——4~H){ = T AT At T
1t 1 —c+1 c—=1 (c—=1). c—1 def simulX(c):
Dot E(X) = ;5. Y=rd.exponential(1/c)
2 . A . X=np.exp(X)
e X? admet une espérance si et seulement si I'intégrale suivante est (absolument) con- return X
vergente (la fonction est positive) :
+o0 +o00
/ t2.f(t)dt = c. / t%ldt Partie 2 : produit de deux variables suivant la loi de Pareto de paramétre ¢
—0o0 1

On considére deux variables aléatoires X; et Xo indépendantes et suivant toutes les deux la

On reconnait encore une intégrale de Riemann, qui converge car c—1 > 1. Donc F(X?)
loi de Pareto de parameétre c. On pose Y7 = In (X1),Y2 =In (X3) et Z = X; Xo.

existe et V(X) existe. Posons encore A > 1 :

A A 1. def simulZ(c):
1 1 1 1
— —ct+1 g0 —c+21A _
Ka _/1 te— et = /1 Tl = [—c+2't Th= c— 2_((:— 2).Ac—2 > A—fo0 PR X1=simulX(c)
X2=simulX(c)
car ¢ —2 > 0. Donc E(X?) = -%;. On en déduit que return X1*X2
2 2_ 2
B N s ¢ ¢ _clc=1)7=c(c—2) c
V(X) = B(X7) X)) = (c=2) (c—1)2 (c—2)(c—1)2 T (c—2).(c—1)2 2. Comme X et X2 sont indépendantes, d’aprés le cours
2
. y < c
e Bilan: [B(X) = 5 |[V(X) = e E(Z) = B(X1).E(X2) = CEnE
3. Sjmme X() = [1,+oo[, on peut déja dire que pour tout z <1, Fx(z) = 0. Soit z > 1. Par coalition, X? et X2 sont également indépendantes et donc
ors
& 2 2 2 ¢
Pe(@) = [ s B(Z*) = E(X})-B(X5) = (——5p
_ / 110 Enfin, par la formule de Koenig-Huygens,
_ 2y _ 2
= 1— — d’aprés les calculs faits en premiére question viz) = E(Zz) B(Z) 4
& c
BCEP N
. Osiz<1
Bilan : |Vz € R, Fx(z) = {177S1x21 _ Ale— 14— cti(c—2)?
- (f—%2@—1ﬂ
4. On pose Y = In(X) et on admet que Y est une variable aléatoire définie sur le méme espace _ A((e—1)2— (= 20))((c—1)2 + (¢ — 2¢))
probabilisé que f. On note G sa fonction de répartition. a (c—2)2.(c—1)4

c.(2¢2 —4c+1)

(a) Pour tout z € R, = m

G(@) = PY <2)=PIn(X) <z)
= P(X; <€) par stricte croissance de la fonction exp sur R 3. (a) Comme Y et Ys suivent la loi £(c), d’aprés le cours, c¢Y; — E(1) et cYa — £(1).
= Fle
(e”) (b) Comme X7 et X5 sont indépendantes, par lemme de coalition Y; et Y3 sont indépen-

La question étant trés facile, il ne faut surtout pas oublier 'argument de stricte crois- dantes. De plus, £(1) = y(1). Par stabilité pour la somme de la loi 7, on peut donc

sance !l ' dire que |cY7 + cYa < ¥(2)
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4. La fonction de répartition H de Y7 + Ys s’obtient grace a celle de ¢Y; + ¢Ys. En effet, pour
tout réel z, on a :

H(z)=P Y1 +Yz2<z)=P(cY1 4 cYs < cx) = K(cx)

Comme K est la fonction de répartition d’une variable aléatoire a densité suivant la loi y(2),
elle est continue sur R et de classe C! sur R sauf en 0 , donc il en est de méme pour H.
On peut donc dériver sauf en 0 et on obtient H'(z) = c.k(cz), ot k est une densité de la loi

7(2).

2 . —CT :
, , 2 iz >0
On trouve alors, en posant h(0) = 0, que la fonction h définie par h(z) = { cre SLE =

0 six <0
est bien une densité de Y7 + Y5.

wt

.OnaY; +Y; =In(X;)+1n(Xs) =1n(Z) et ainsi : Z = exp (Y7 + Ya).

Comme Y et Y5 sont indépendantes et telles que Y1 () = Y2(Q) = [0, +oof, ona (Y1 + Y2) () =

[0, 400 donc Z(2) =[1,4+00][ et on a déja Fz(z) =0siz < 1.
Pour tout réel # > 1, on trouve : Fz(z) = H(In(z)).

Llp(n(z) siz>1

En dérivant sauf en 1, on obtient fz(z) = { § Gzl

Pour > 1, on a In(z) > 0 donc :

2 In(z)

h(In(z)) = @ In(z)e= @ = 2 ln(x)e]"(fa) =ln(z) x ¢ = -
x

En posant fz(1) = 0, une densité fz de Z est donnée par :

2@ G e
f2ta) { =T B2

0 six <1

6. (a) Pour tout x supérieur ou égal & 1, on pose I(z) = [ h;ff) dt. Les fonctions u et v,

définies par u(t) = W et v(t) = In(t), sont de classe C! sur [1,+oo[ donc on

peut procéder & une intégration par parties, ce qui donne :

—In(z) 1 -1
() = (= 1)zt + (a—1)2 (F + 1>

Comme « est strictement supérieur a 1, I(x) a une limite finie lorsque z tend vers +oo,
oo In(z)
e

ce qui prouve que f;r dx converge, et aprés passage a la limite, on trouve :

‘+001 P 1
Ya > 1,/ Mdi =
1 z (a—1)
(b) Les intégrales f;roo zfz(z)dz et f;roo 22 fz(x)dz sont (absolument) convergentes et
P 0o In(z 2 oo In(z
valent respectivement ¢2 [, 11(7) dz = 55z (carc > 1) et N lzp(—,l) dz =
(.:522)2 (carc—1>1).

On retrouve bien E(Z) = ﬁ et E(2%) = ﬁ ce qui permet, comme dans la
question 6), et toujours avec la formule de Koenig-Huygens, d’obtenir :

?(2¢* —4c+1)
Y= ey
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‘Probléme : Edhec 2021‘

‘Partie 1 : calcul d’intégrales utiles pour la suite‘

1. On calcule :

1
x]H—l :|
0

(171)0+1}1 1
p+1 0

a+1 ], gq+1

I(p,0) = [ et 1(0,q) = {_

1
p+1

J
2. Soit (p,q) € NxN*. On fait une intégration par parties avec u(z) = etv(z) = (1—x)%.

+1
Ceci est licite car les fonctions u et v sont de classe C! sur [0;1]. On a v/(z) = 2P et comme
g>1:7'(z)=—q(1 —2)7"! On obtient :

xT

1 p+1 =1 1+l .
I(p, :/l’px lqudw:{ X 171L'q:| 7/ — x (—q(1 — )9 ) dx
w.0)= | (1-2) P Ttk R M (—a(1—2)*™)

1
:070+L/ 2PT(1 - 2)4 Ve
r+1Jo

On obtient bien :

q
Ip,g)= L I(p+1,q—1
(p,q) pH(p q—1)

3. e Pour ¢ = 0. Pour tout p € N on a bien :

plo!
(p+0)!
=1

I(p,0) = xI(p+0,0)

lg!
e Soit ¢ € N. On suppose que pour tout p € N : I(p,q) = ( p-;_ : )'I(p + ¢,0). Montrons
pT4q)
que pour tout p € N :
pl(g+1)!
Ipg+1) =27 1p4q+1,0
(g +1) PR (pta )

Soit p € N. On applique la relation de la question 2 au couple (p,q + 1) qui est bien
dans N x N*. On obtient :

g+1
Ipg+1) =L 1p+1,
(p,g+1) p+1( q)

Par hypotheése de récurrence on a :

(p+ 1!
Ip+1,q)= LT 105 4144,0
(p+1,9) (p+1+)!(p 1,0)
1!
Enfin, (211) =plet (¢+1)¢' = (¢+ 1)!. On obtient donc :
qg+1 (p+1)lg! pl(g+1)!

Ipg+1) =172 5 LTC 014 4.00= 24 1p44+1,0
P+ 1) =" RS » ,0) ptat D) (r+q )
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4. En utilisant les questions 3 et 1 on obtient pour tout (p,q) € N x N :

plg! plg! 1 plg!
I(p,q) = x I(p+q,0) = X =
(r+9q) (r+q)! p+tqg+l |(p+g+1)!
En particuli tout neN: | I(n,n) (n))?
Nl particulier pour tout 7n N nn)=-———
P P ' @2n+1)!

[Partie 2 : étude d’une suite de variables aléatoires]

1. e La fonction by est continue sur ] — 00;0[ et sur ]1;4o0[ (fonction nulle) et aussi sur
10; 1] (polyndéme). Donc by, est ‘ continue sur R\{0, 1} ‘

e Soitz€R. Size[0;1],ona: z>0et (1—2)>0donc:

i @2n+1)! o
bp(x) = W;ﬁ’(l —z)" >0
Sinon, by, (z) = 0. Dans tous les cason a: |by(x) >0

e Enfin, sous réserve de convergence :

/j: bo(z)dx = /;b\(()ildr+/ol b,L(x)dz+/1+Dobigide = /01 %z"(l—m)”dm

Cette intégrale converge (intégrale d’une fonction continue sur un segment) et par
linéarité de l'intégrale :

+oo 2n+ 1) [t n 2n + 1) n!)2
/,oo (o) = (n!)2) /0 w1y = (n!)2) * (2£L+)1)!E|
N———

on reconnait I(n,n)

Bilan : ‘ b, est une densité de probabilité‘

2. Xo admet la densité fy définie par :

1 sio<z<1
.M@—{

0 sinon

Bilan : X suit la ‘ loi uniforme sur [0; 1] ‘

3. (a) Sous réserve de convergence (absolue, mais X,, est a valeurs positives) :

+oo ! (2n+1)!

E(X,) = / abp(@yde = [ ZE D nia pyngp
J—o0 JO (”!)

Cette intégrale converge (intégrale d’une fonction continue sur un segment) donc X,

admet une espérance. Par linéarité :

[ ! In!
B(X,) = (23:—)21)‘ / 21 = 2)de 2n+1)!  (n+Dln!  n+1 1
: 0

@2 @n+2)l  mt2 2

on reconnait I(n+1,n)

On a bien : | E(X,) = -
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(b) On commence par calculer E(X?2) avec le théoréme de transfert (sous réserve de con-
vergence) :

E(X% = /+OC 22by, (2)dx

o]

De méme que pour E(X,,), on montre que F(X?2) existe et que :

2n + 1)! @Cn+1)! (n+2)n! (n+2)(n+1) n+2
Bx2) = B Do ) = = =
(Xn) (n!)? (n+2,m) (n!)? * @2n+3)! (2n+3)2n+2) 2(2n+3)
X, admet donc une variance et par formule de Koenig-Huygens :
+2 1 2(n+2)—(2n+3) 1
V(X,) = B(X2) - B(X,)? = 12~ =
(Xn) (Xz) (Xn) 22n+3) 4 4(2n + 3) 4(2n +3)
(c) Soit € > 0. D’apres l'inégalité de Bienaymé-Tchebychev on a pour tout n € N :
V(X
0< P (1%, B > 0) < V)

autrement dit :

1 1
0<P(|Xp—22e)<
<‘ "3l E) 422(2n + 3)
—_——

tend vers 0 quand n—-+oo

Par encadrement on en déduit que :
. 1 .
lim P (|X, — z| > ¢ existe et vaut 0
n—+4o0 2

Bilan :

1
La suite (X, )nen+ | converge en probabilité vers la variable certaine de valeur 3

[Partie 3 : modéle de X, simulation informatique

0 siz<0
1. FU(Z)Z xT 510<x<1
1 siz>1

2. (a) Vapy1 désigne le temps d’arrivée de la derniére personne.

Autrement dit : ‘ Vont1 = max(Ut, ..., Uznt1) ‘

(b) Pour tout z € Ron a :
G2n+1('r) = P(‘/2n+1 < T)
P(max(Ul, vy Ugpyr) € L)
P([Ul < I] ﬂ[UQ <x] ﬂ'--ﬂ[U2n+1 <I])

ou , désigne une intersection. Par mutuelle indépendance des variables aléatoires Uy,
..., Usypt1 on a donc :

2n+1
G2n+1(1) = P(Ul < I) X P(UZ < CL) X X P(U2n+1 < 1) = (FU(Z))

=Fy(z) =Fy(z) =Fy(z)
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Bilan : On note & I'ensemble des sous-ensembles de [1;2n + 1] ayant exactement k éléments.

0 siz <0 On a donc :
Gonti1(z) =422t siog<a <1
1 siz>1 Re= || (ﬂ[U,-@e])ﬁ N [Ui>a
JEE i€ i€[1;2n+1]\J
3. (a) Vi désigne le temps d’arrivée de la premiére personne. Autrement dit : ‘ Vi =min(Uy,...,Uzt1) ‘ On a done, par mutuelle indépendance des variables aléatoires Uy, ..., Upi1 :
(b) Pour tout z € Ron a : '
P(Ry) = Z HP(Ui <) X H PU; >z) = Z zF(1 — z)2nHi-k
P(Vi >z) = P(min(Uh o Usnsr) > x) =P(U, > 2,Us >, ..., Usns1 > ) Jegpic ief12n+1)\J =
—_—
k (1—z)2n+1-Fk
Par mutuelle indépendance des variables aléatoires Uy, ..., Uay41 on a donc :

2n+1 Enfin, 'ensemble & est de cardinal <2n + 1>. On a donc bien :
P(Vi > ) = P(Uy > 2) x P(Us > @) X -+ X P(Usps1 > ) = (1 - FU(a:)) e
—_———— — —— —_————

=1-Fy(z) =1-Fy(z) =1-Fy(z)

2 1 .
Py = ()t )
On a donc :
2n+1 o 1 .
Gi(2) = POi <2) =1 P(Vi >2) = 1— (1 B FU(T)) n Les égalités (1) et (2) donnent le résultat souhaité :
2n+1
g 2n+1 _
Bilan : G,H,](CE) _ Z ( . >.Lk(1 _ x)2n+1 k
0 siz <0 k=n+1
Gi(z) =<{1—(1—2)™ s0<a<1
1 siz>1 (b) Comme V41 est a valeurs dans [0;1] on a aussi : pour tout z < 0 : Gpyi(z) = 0 et

pour tout > 1 : Gpy1(x) = 1. Gy est de classe C' sur R sauf éventuellement en 0
4. et en 1. On trouve une densité g,; de V41 en dérivant Gp4+1 en tout point x # 0, 1.
Donc siz <0ouz >0: gpyi1(x) =0. Et si z €]0; 1], par linéarité de la dérivation :

n = input(’Entrez la valeur de n : ’) 2n+41 9 1
U - rd.uniforn(0,1,2%n+1) e S A | (e e C R PR (R
Vpremier=np.min(U) #V1 k=n+1 k
Vdernier=np.max(U) #V_{2n+1}
donc
5. (a) Pour tout € [0;1] on a : Al on 1 Al o1
k— 2n+1—k k 2n—k
s (1) = P(Vies < ) D Dl G L e Dl W [ R BRI
k=n+1 k=n+1
L’événement [V,,41 < z] est réalisé si et seulement si, au moins n + 1 personnes sont 3 - 3 -
arrivées avant le temps z. Pour tout k € [n + 1;2n + 1] on note Ry I'événement : on note 5 cette somme on note 52 cette somume
Ry, : exactement k personnes sont arrivées avant le temps x On ré-écrit la somme 51 :
. 2n+1 2n+1
On a donc : si= % (2n+1)! kah=1(1—z)2 ik = 3 (2n+1)! 1 (1)1
(Vi1 < 2] = Ry U Rpyo U+~ U Ropga L < K20+ 1 k) o k= Dln+ 1 k)
=N ="

ot LJ désigne une union disjointe. On a donc :
On ré-écrit maintenant la somme Sp. Comme le terme (2n + 1 — k) vaut 0 pour

Intl k=2n+1,ona:
Gri1(2) = P(Ryj1 URnya U URpu) = Y. P(Ry) (1)
k=n+1 2 o1 el 2n 4 1)!
S= > ( " )(2n+1—k)xk(1_x)2”*k =Y @n+1) (2n+1-k)at (1—2)2k
Soit k € [n + 1;2n + 1]. On va montrer que : it k W E'2n+1—k)!
2n+1 2
R A R R TRV Y
Wom kl(2n — k)!
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On fait un changement d’indice i = k + 1. On obtient :

2n+1

(2n+1)! i—1 Int1—i
Sy = i 1— n+1—1i
2 i;ﬂ;g i—Dignri—p® 179
On a donc :
2n+1 2n+1
(2n+1)! k-1 21—k (2n+1)! i—1 n1—i
) = R Sl M & S 1—g)2ntl-k_ P Sl e? A—s e Y G A LA S
gn+1(7) k;rl GoDEnr i 07 Z_Z;Q Doyt
11 ne reste que le terme k = n + 1 de la premiére somme :
(2n+1)!
gri(e) = ZLE g gy
2 1)!
Enfin on pose gn4+1(0) = gnt+1(1) = (7(17;2)0". On a obtenu la densité suivante de
n!
Vosr
2n +1)!
%z"(l—x)" si0<z <1
gm—l(m) = (’ﬂ)

0 si non

On reconnait la fonction b, densité de X,,.
Bilan :‘ les variables aléatoires X, et V;,41 ont la méme densité donc elles ont la méme loi

(c

N

Le programme renvoie la valeur médiane du tableau U c’est-a-dire En effet :
1<2<5<8<9<13<23

D’aprés la question 12.b, il suffit de simuler la variable aléatoire V41, c’est-a-dire la

valeur médiane | de Uy, ..., Uzpy1. D’ol le programme suivant :

n = int(input (’Entrez la valeur de n : ’))
U = rd.uniform(0,1,2*n+1)
X = np.median(U) # simulation de Xn

ez
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