
Corrigé du DS n◦5 - 14/01/2026

Exercice 1 ("Sujet 0", Ecricome 2023)

Partie I

1. On obtient par le calcul

A2 =

−5 2 1
2 −2 2
1 2 −5


puis

A3 =

 0 6 −12
−6 0 6
12 −6 0


On a donc A3 = −6.A. En notant α =

√
6, on a alors A3 = −α2.A

2. Déterminons le noyau de A. Soit X =

xy
z

 ∈M3,1(R). Alors

X ∈ Ker(A)⇔ AX = 0⇔


−y + 2z = 0
x− z = 0
−2x+ y = 0

⇔
{
y = 2z
x = z

⇔ X =

 z
2z
z



Ainsi Ker(A) = V ect(

1
2
1

) et donc Ker(g) = V ect((1, 2, 1)). Comme Ker(g) 6= {0}, 0 est

bien une valeur propre de g.
‖(1, 2, 1)‖ =

√
1 + 4 + 1 =

√
6. Notons v1 = 1√

6
.(1, 2, 1). Le vecteur v1 est alors de norme 1

et la famille (v1) est une base de Ker(g) = E0(g).

3. Le polynôme P (x) = x3 + α2.x est annulateur de A d’après la question 1.
Comme P (x) = x(x2 + α2), ce polynôme a pour unique racine 0. D’après le cours,

Sp(A) ⊂ {racines de P}

donc Sp(A) ⊂ {0}. Finalement, Sp(g) = Sp(A) = {0}

4. Comme 0 ∈ Sp(g), g n’est pas bijectif De plus,∑
λ∈Sp(g)

dim(Ker(g − λ.Id)) = dim(Ker(g)) = 1 6= 3

donc g n’est pas diagonalisable

5. On pose v2 = 1√
2
(−1, 0, 1).

〈v1, v2〉 =
1√
6
.

1√
2
. 〈(1, 2, 1), (−1, 0, 1)〉 = 0
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donc v2 ∈ (E0(g))⊥. D’après le cours, comme dim(E0(g)) = 1, on a dim(E0(g)⊥) = 3−1 = 2.
Considérons par exemple le vecteur v3 = 1√

3
.(1,−1, 1). Alors v3 est un vecteur normé, qui

est orthogonal à v1, donc v3 ∈ E0(g)⊥. De plus, les vecteurs v2 et v3 sont orthogonaux,
donc forment une famille orthonormée donc libre. Cette famille étant de cardinal 2, il s’agit
d’une base de E0(g)⊥.
Bilan : la famille (v2, v3) où v2 = 1√

2
(−1, 0, 1) et v3 = 1√

3
.(1,−1, 1) est une BON de

(E0(g))⊥.

6. La famille C = (v1, v2, v3) est une famille orthonormée de R3, il s’agit donc d’une famille
libre. Etant de cardinal 3, c’est une base de R3. Ainsi C est une BON de E. Dans cette
base : g(v1) = 0 car v1 ∈ Ker(g).

A.
1√
2
.

−1
0
1

 =
√

2.

 1
−1
1


donc g(v2) =

√
6.v3

A.
1√
3
.

 1
−1
1

 =
1√
3
.

3
0
3

 =
√

3..

 1
0
−1


donc g(v3) = −

√
6.v2.

Finalement, la matrice dans la BON C de g est :

MatC(g) =

0 0 0

0 0 −
√

6

0
√

6 0


Partie II

1. Pour tout endomorphisme f de E, montrons que les deux propriétés (P1) et (P2) ci-dessous
sont équivalentes :

(P1) : ∀x ∈ E, 〈f(x), x〉 = 0

(P2) : ∀(x, y) ∈ E2, 〈f(x), y〉 = −〈x, f(y)〉

• Supposons que la propriété (P2) est vraie. Alors, pour tout x ∈ E, en prenant x = y :

〈f(x), x〉 = −〈x, f(x)〉 ⇔ 2 〈x, f(x)〉 = 0⇔ 〈f(x), x〉 = 0

donc la propriété (P1) est vraie.

• Supposons que la propriété (P1) est vraie. Soit (x, y) ∈ E2. On a alors :

〈f(x+ y), x+ y〉 = 0 ⇒ 〈f(x) + f(y), x+ y〉 = 0 par linéarité de f
⇒ 〈f(x), x〉+ 〈f(x), y〉+ 〈f(y), x〉+ 〈f(y), y〉 = 0

⇒ 〈f(x), y〉+ 〈f(y), x〉 = 0 d’après (P1)

⇒ 〈f(x), y〉 = −〈x, f(y)〉

donc la propriété (P2) est vraie.

• Bilan : par double implication, (P1)⇔ (P2)
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2. Soit u ∈ R3, u = (x, y, z), X = MatB(u) =

xy
z

. Comme la base canonique de R3 est une

BON de R3 pour le p.s. canonique,

〈g(u), u〉 = t (A.X).X = tX. tA.X = (xyz).

 y − 2z
−x+ z
2x− y

 = xy−2xz−xy+yz+2xz−yz = 0

Donc l’endomorphisme g défini dans la partie précédente est anti-symétrique

3. On veut démontrer par l’absurde que f n’est pas bijective.
On suppose donc que f est bijective.
Soit x un vecteur non nul de E et soit F le sous-espace vectoriel de E engendré par x et
f(x).

(a) Montrons que la famille (x, f(x)) est libre. Soit (α, β) ∈ R2 tels que

α.x+ β.f(x) = 0

Alors en prenant le produit scalaire avec x :

〈x, α.x+ β.f(x)〉 = 0⇔ α. 〈x, x〉+ β. 〈x, f(x)〉 = 0

D’après la propriété (P1), 〈x, f(x)〉 = 0, donc α. ‖x‖2 = 0. Comme x 6= 0E , ‖x‖ > 0,
donc α = 0. Enfin, comme f est supposée bijective, Ker(f) = {0E}. Comme x 6= 0E ,
x /∈ Ker(f) donc f(x) 6= 0. Finalement, comme β.f(x) = 0, on a β = 0.
Ainsi, α = β = 0 : la famille (x, f(x)) est libre.
Comme F = V ect(x, f(x)) on a donc dim(F ) = 2

(b) On sait déjà d’après la propriété (P1) que x et f(x) sont orthogonaux. Comme
dim(F ) = 2, on a dim(F⊥) = 3 − 2 = 1. Soit y un vecteur non nul de F⊥. Alors
y est orthogonal à x et à f(x). Donc la famille 〈x, f(x), y〉 est orthogonale.

(c) Montrons que la famille (x, f(x), y, f(y)) est libre. Soit (α, β, γ, δ) ∈ R4 tels que

α.x+ β.f(x) + γ.y + δ.f(y) = 0

En calculant le produit scalaire de ce vecteur avec y, comme 〈x, y〉 = 〈f(x), y〉 =
〈f(y), y〉 = 0, on obtient γ = 0.
Puis en calculant le produit scalaire de α.x+ β.f(x) + δ.f(y) = 0 avec x :

α. 〈x, x〉+ δ 〈f(y), x〉 = 0⇔ α. ‖x‖2 − δ 〈y, f(x)〉 = 0⇔ α. ‖x‖2 = 0⇔ α = 0

en utilisant (P2).
Reste β.f(x) + δ.f(y) = 0 ⇔ f(β.x + δ.y) = 0. Comme Ker(f) = {0}, on alors
β.x+ δ.y = 0. Comme x et y sont deux vecteurs orthogonaux non nuls, ils forment une
famille libre et donc enfin β = δ = 0.
Bilan : la famille (x, f(x), y, f(y)) est libre

(d) La famille (x, f(x), y, f(y)) est une famille libre de cardinal 4 dans un espace de di-
mension 3 : c’est absurde !
Donc notre hypothèse initiale est fausse : si f est anti-symétrique alors f n’est pas bijective

4. Comme f n’est pas bijective, Ker(f) 6= {0E}. Soit e′1 un vecteur non nul de Ker(f). Quitte
à le normer, on peut supposer que ‖e′1‖ = 1. D’après le théorème de la base orthonormée
incomplète, il existe alors des vecteurs e′2, e′3 de E tels que la famille B′ = (e′1, e

′
2, e
′
3) est une

base orthonormale de E.
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5. (a) Comme B′ est une BON, on a :

A = MatB′(f) =

〈f(e′1), e
′
1〉 〈f(e′2), e

′
1〉 〈f(e′3), e

′
1〉

〈f(e′1), e
′
2〉 〈f(e′2), e

′
2〉 〈f(e′3), e

′
2〉

〈f(e′1), e
′
3〉 〈f(e′2), e

′
3〉 〈f(e′3), e

′
3〉


D’après (P2), pour tout (i, j) ∈ [[1, 3]]2,

( tA)i,j = (A)j,i =
〈
f(e′i), e

′
j

〉
= −

〈
e′i, f(e′j)

〉
= −(A)i,j

donc tA = −A : la matrice représentative de f dans la base B′ est anti-symétrique.

(b) Comme f(e′1) = 0 et comme 〈f(e′2), e
′
2〉 = 〈f(e′3), e

′
3〉 = 0, on peut dire que

A =

0 〈f(e′2), e
′
1〉 〈f(e′3), e

′
1〉

0 0 〈f(e′3), e
′
2〉

0 〈f(e′2), e
′
3〉 0


et par antisymétrie de A, en notant α = 〈f(e′2), e

′
3〉:

A =

0 0 0
0 0 −α
0 α 0


Pour conclure, nous avons bien montré que pour tout endomorphisme antisymétrique
de R3, il existe une BON de R3 dans laquelle

MatB′(f) = A =

0 0 0
0 0 −α
0 α 0



Exercice 2 : Edhec 2023

On désigne par c un réel strictement supérieur à 2 et on suppose que toutes les variables aléatoires
rencontrées dans cet exercice, sont définies sur le même espace probabilisé.

Partie 1 : étude d’une loi de probabilité

On considère la fonction f définie par: f(x) =

{
c

xc+1 si x ≥ 1
0 si x < 1

.

1. La fonction f est positive sur R, et continue sur R \ {1}. Ensuite,∫ +∞

−∞
f(t)dt =

∫ +∞

1

c

tc+1
dt

On reconnait une intégrale de Riemann, qui converge car c+ 1 > 3 > 1. Posons A > 1.

IA =

∫ A

1

c

tc+1
dt =

∫ A

1
c.t−c−1dt = [−t−c]A1 = 1− 1

Ac
→A→+∞ 1

Donc
∫ +∞
−∞ f(t)dt =

∫ +∞
1

c
tc+1dt = 1.

Bilan : f est une densité de probabilité

On considère dans la suite une variable aléatoire X telle que X(Ω) = [1,+∞[, de densité f
et on note F sa fonction de répartition. On dit que X suit la loi de Pareto de paramètre c.
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2. • X admet une espérance si et seulement si l’intégrale suivante est (absolument) conver-
gente (la fonction est positive) :∫ +∞

−∞
t.f(t)dt = c.

∫
1

+∞ 1

tc
dt

On reconnait une intégrale de Riemann, qui converge car c > 2 > 1. Donc E(X) existe.
Posons encore A ≥ 1 :

JA =

∫ A

1

1

tc
dt =

∫ A

1
t−cdt = [

1

−c+ 1
.t−c+1]A1 =

1

c− 1
− 1

(c− 1).Ac−1
→A→+∞

1

c− 1

D’où E(X) = c
c−1 .

• X2 admet une espérance si et seulement si l’intégrale suivante est (absolument) con-
vergente (la fonction est positive) :∫ +∞

−∞
t2.f(t)dt = c.

∫ +∞

1

1

tc−1
dt

On reconnait encore une intégrale de Riemann, qui converge car c−1 > 1. Donc E(X2)
existe et V (X) existe. Posons encore A ≥ 1 :

KA =

∫ A

1

1

tc−1
dt =

∫ A

1
t−c+1dt = [

1

−c+ 2
.t−c+2]A1 =

1

c− 2
− 1

(c− 2).Ac−2
→A→+∞

1

c− 2

car c− 2 > 0. Donc E(X2) = c
c−2 . On en déduit que

V (X) = E(X2)−(E(X))2 =
c

(c− 2)
− c2

(c− 1)2
=
c.(c− 1)2 − c2.(c− 2)

(c− 2)(c− 1)2
=

c

(c− 2).(c− 1)2

• Bilan : E(X) = c
c−1 V (X) = c

(c−2).(c−1)2

3. Comme X(Ω) = [1,+∞[, on peut déjà dire que pour tout x < 1, FX(x) = 0. Soit x ≥ 1.
Alors

FX(x) =

∫ x

−∞
f(t)dt

=

∫ x

1
f(t)dt

= 1− 1

xc
d’après les calculs faits en première question

Bilan : ∀x ∈ R, FX(x) =

{
0 si x < 1
1− 1

xc si x ≥ 1

4. On pose Y = ln(X) et on admet que Y est une variable aléatoire définie sur le même espace
probabilisé que f . On note G sa fonction de répartition.

(a) Pour tout x ∈ R,

G(x) = P (Y ≤ x) = P (ln(X) ≤ x)

= P (X ≤ ex) par stricte croissance de la fonction exp sur R
= F (ex)

La question étant très facile, il ne faut surtout pas oublier l’argument de stricte crois-
sance !!!
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(b) On en déduit que si x < 0, comme ex < 1, G(x) = 0. Si x ≥ 0,

G(x) = F (ex) = 1− 1

(ex)c
= 1− e−cx

On reconnait la fonction de répartition d’une loi exponentielle de paramètre c !
Bilan : Y ↪→ E(c)

(c) Comme Y = ln(X), on a aussi X = eY . Nous allons donc simuler Y et en déduire une
simulation de X.

def simulX(c):
Y=rd.exponential(1/c)
X=np.exp(X)
return X

Partie 2 : produit de deux variables suivant la loi de Pareto de paramètre c

On considère deux variables aléatoires X1 et X2 indépendantes et suivant toutes les deux la
loi de Pareto de paramètre c. On pose Y1 = ln (X1) , Y2 = ln (X2) et Z = X1X2.

1. def simulZ(c):
X1=simulX(c)
X2=simulX(c)
return X1*X2

2. Comme X1 et X2 sont indépendantes, d’après le cours

E(Z) = E(X1).E(X2) =
c2

(c− 1)2

Par coalition, X2
1 et X2

2 sont également indépendantes et donc

E(Z2) = E(X2
1 ).E(X2

2 ) =
c2

(c− 2)2

Enfin, par la formule de Koenig-Huygens,

V (Z) = E(Z2)− E(Z)2

=
c2

(c− 2)2
− c4

(c− 1)4

=
c2(c− 1)4 − c4.(c− 2)2

(c− 2)2.(c− 1)4

=
c2.((c− 1)2 − (c2 − 2c))((c− 1)2 + (c2 − 2c))

(c− 2)2.(c− 1)4

=
c2.(2c2 − 4c+ 1)

(c− 2)2.(c− 1)4

3. (a) Comme Y1 et Y2 suivent la loi E(c), d’après le cours, cY1 ↪→ E(1) et cY2 ↪→ E(1).

(b) Comme X1 et X2 sont indépendantes, par lemme de coalition Y1 et Y2 sont indépen-
dantes. De plus, E(1) = γ(1). Par stabilité pour la somme de la loi γ, on peut donc
dire que cY1 + cY2 ↪→ γ(2)
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4. La fonction de répartition H de Y1 + Y2 s’obtient grâce à celle de cY1 + cY2. En effet, pour
tout réel x, on a :

H(x) = P (Y1 + Y2 ≤ x) = P (cY1 + cY2 ≤ cx) = K(cx)

Comme K est la fonction de répartition d’une variable aléatoire à densité suivant la loi γ(2),
elle est continue sur R et de classe C1 sur R sauf en 0 , donc il en est de même pour H.
On peut donc dériver sauf en 0 et on obtient H ′(x) = c.k(cx), où k est une densité de la loi
γ(2).

On trouve alors, en posant h(0) = 0, que la fonction h définie par h(x) =

{
c2xe−cx si x ≥ 0
0 si x < 0

est bien une densité de Y1 + Y2.

5. On a Y1 + Y2 = ln (X1) + ln (X2) = ln(Z) et ainsi : Z = exp (Y1 + Y2).

Comme Y1 et Y2 sont indépendantes et telles que Y1(Ω) = Y2(Ω) = [0,+∞[, on a (Y1 + Y2) (Ω) =
[0,+∞ [ donc Z(Ω) = [1,+∞ [ et on a déjà FZ(x) = 0 si x < 1.

Pour tout réel x ≥ 1, on trouve : FZ(x) = H(ln(x)).

En dérivant sauf en 1, on obtient fZ(x) =

{
1
xh(ln(x)) si x > 1
0 si x < 1

.

Pour x > 1, on a ln(x) > 0 donc :

h(ln(x)) = c2 ln(x)e−c ln(x) = c2 ln(x)eln(x
−c) = c2 ln(x)× x−c =

c2 ln(x)

xc

En posant fZ(1) = 0, une densité fZ de Z est donnée par :

fZ(x) =

{
c2 ln(x)
xc+1 si x ≥ 1

0 si x < 1

6. (a) Pour tout x supérieur ou égal à 1 , on pose I(x) =
∫ x
1

ln(t)
tα dt. Les fonctions u et v,

définies par u(t) = −1
(α−1)tα−1 et v(t) = ln(t), sont de classe C1 sur [1,+∞[ donc on

peut procéder à une intégration par parties, ce qui donne :

I(x) =
− ln(x)

(α− 1)xα−1
+

1

(α− 1)2

(
−1

xα−1
+ 1

)
Comme α est strictement supérieur à 1, I(x) a une limite finie lorsque x tend vers +∞,
ce qui prouve que

∫ +∞
1

ln(x)
xα dx converge, et après passage à la limite, on trouve :

∀α > 1,

∫ +∞

1

ln(x)

xα
dx =

1

(α− 1)2

(b) Les intégrales
∫ +∞
1 xfZ(x)dx et

∫ +∞
1 x2fZ(x)dx sont (absolument) convergentes et

valent respectivement c2
∫ +∞
1

ln(x)
xc dx = c2

(c−1)2 (car c > 1) et c2
∫ +∞
1

ln(x)
xc−1 dx =

c2

(c−2)2 (car c− 1 > 1).

On retrouve bien E(Z) = c2

(c−1)2 et E
(
Z2
)

= c2

(c−2)2 , ce qui permet, comme dans la
question 6), et toujours avec la formule de Koenig-Huygens, d’obtenir :

V (Z) =
c2
(
2c2 − 4c+ 1

)
(c− 2)2(c− 1)4
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Problème : Edhec 2021

Partie 1 : calcul d’intégrales utiles pour la suite

1. On calcule :

I(p, 0) =

[
xp+1

p+ 1

]1
0

=
1

p+ 1
et I(0, q) =

[
−(1− x)q+1

q + 1

]1
0

=
1

q + 1

2. Soit (p, q) ∈ N×N∗. On fait une intégration par parties avec u(x) =
xp+1

p+ 1
et v(x) = (1−x)q.

Ceci est licite car les fonctions u et v sont de classe C1 sur [0; 1]. On a u′(x) = xp et comme
q > 1 : v′(x) = −q(1− x)q−1 On obtient :

I(p, q) =

∫ 1

0
xp × (1− x)qdx =

[
xp+1

p+ 1
× (1− x)q

]x=1

x=0

−
∫ 1

0

xp+1

p+ 1
×
(
−q(1− x)q−1

)
dx

= 0− 0 +
q

p+ 1

∫ 1

0
xp+1(1− x)q−1dx

On obtient bien :
I(p, q) =

q

p+ 1
I(p+ 1, q − 1)

3. • Pour q = 0. Pour tout p ∈ N on a bien :

I(p, 0) =
p!0!

(p+ 0)!︸ ︷︷ ︸
=1

×I(p+ 0, 0)

• Soit q ∈ N. On suppose que pour tout p ∈ N : I(p, q) =
p!q!

(p+ q)!
I(p+ q, 0). Montrons

que pour tout p ∈ N :

I(p, q + 1) =
p!(q + 1)!

(p+ q + 1)!
I(p+ q + 1, 0)

Soit p ∈ N. On applique la relation de la question 2 au couple (p, q + 1) qui est bien
dans N× N∗. On obtient :

I(p, q + 1) =
q + 1

p+ 1
I(p+ 1, q)

Par hypothèse de récurrence on a :

I(p+ 1, q) =
(p+ 1)!q!

(p+ 1 + q)!
I(p+ 1 + q, 0)

Enfin,
(p+ 1)!

p+ 1
= p! et (q + 1)q! = (q + 1)!. On obtient donc :

I(p, q + 1) =
q + 1

p+ 1
× (p+ 1)!q!

(p+ 1 + q)!
I(p+ 1 + q, 0) =

p!(q + 1)!

(p+ q + 1)!
I(p+ q + 1, 0)
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4. En utilisant les questions 3 et 1 on obtient pour tout (p, q) ∈ N× N :

I(p, q) =
p!q!

(p+ q)!
× I(p+ q, 0) =

p!q!

(p+ q)!
× 1

p+ q + 1
=

p!q!

(p+ q + 1)!

En particulier pour tout n ∈ N : I(n, n) =
(n!)2

(2n+ 1)!

Partie 2 : étude d’une suite de variables aléatoires

1. • La fonction bn est continue sur ] − ∞; 0[ et sur ]1; +∞[ (fonction nulle) et aussi sur
]0; 1[ (polynôme). Donc bn est continue sur R\{0, 1}

• Soit x ∈ R. Si x ∈ [0; 1], on a : x > 0 et (1− x) > 0 donc :

bn(x) =
(2n+ 1)!

(n!)2
xn(1− x)n > 0

Sinon, bn(x) = 0. Dans tous les cas on a : bn(x) > 0

• Enfin, sous réserve de convergence :∫ +∞

−∞
bn(x)dx =

∫ 0

−∞
bn(x)︸ ︷︷ ︸

0

dx+

∫ 1

0
bn(x)dx+

∫ +∞

1
bn(x)︸ ︷︷ ︸

0

dx =

∫ 1

0

(2n+ 1)!

(n!)2
xn(1−x)ndx

Cette intégrale converge (intégrale d’une fonction continue sur un segment) et par
linéarité de l’intégrale :∫ +∞

−∞
bn(x)dx =

(2n+ 1)!

(n!)2

∫ 1

0
xn(1− x)ndx︸ ︷︷ ︸

on reconnaît I(n,n)

=
(2n+ 1)!

(n!)2
× (n!)2

(2n+ 1)!
= 1

Bilan : bn est une densité de probabilité

2. X0 admet la densité f0 définie par :

f0(x) =

{
1 si 0 6 x 6 1

0 sinon

Bilan : X0 suit la loi uniforme sur [0; 1]

3. (a) Sous réserve de convergence (absolue, mais Xn est à valeurs positives) :

E(Xn) =

∫ +∞

−∞
xbn(x)dx =

∫ 1

0

(2n+ 1)!

(n!)2
xn+1(1− x)ndx

Cette intégrale converge (intégrale d’une fonction continue sur un segment) donc Xn

admet une espérance. Par linéarité :

E(Xn) =
(2n+ 1)!

(n!)2

∫ 1

0
xn+1(1− x)ndx︸ ︷︷ ︸

on reconnaît I(n+1,n)

=
(2n+ 1)!

(n!)2
× (n+ 1)!n!

(2n+ 2)!
=

n+ 1

2n+ 2
=

1

2

On a bien : E(Xn) =
1

2
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(b) On commence par calculer E(X2
n) avec le théorème de transfert (sous réserve de con-

vergence) :

E(X2
n) =

∫ +∞

−∞
x2bn(x)dx

De même que pour E(Xn), on montre que E(X2
n) existe et que :

E(X2
n) =

(2n+ 1)!

(n!)2
I(n+2, n) =

(2n+ 1)!

(n!)2
×(n+ 2)!n!

(2n+ 3)!
=

(n+ 2)(n+ 1)

(2n+ 3)(2n+ 2)
=

n+ 2

2(2n+ 3)

Xn admet donc une variance et par formule de Koenig-Huygens :

V (Xn) = E(X2
n)− E(Xn)2 =

n+ 2

2(2n+ 3)
− 1

4
=

2(n+ 2)− (2n+ 3)

4(2n+ 3)
=

1

4(2n+ 3)

(c) Soit ε > 0. D’après l’inégalité de Bienaymé-Tchebychev on a pour tout n ∈ N :

0 6 P (|Xn − E(Xn)| > ε) 6
V (Xn)

ε2

autrement dit :

0 6 P

(
|Xn −

1

2
| > ε

)
6

1

4ε2(2n+ 3)︸ ︷︷ ︸
tend vers 0 quand n→+∞

Par encadrement on en déduit que :

lim
n→+∞

P

(
|Xn −

1

2
| > ε

)
existe et vaut 0

Bilan :

La suite (Xn)n∈N∗ converge en probabilité vers la variable certaine de valeur
1

2

Partie 3 : modèle de Xn, simulation informatique

1. FU (x) =


0 si x < 0

x si 0 6 x 6 1

1 si x > 1

2. (a) V2n+1 désigne le temps d’arrivée de la dernière personne.
Autrement dit : V2n+1 = max(U1, . . . , U2n+1)

(b) Pour tout x ∈ R on a :

G2n+1(x) = P (V2n+1 6 x)

= P
(

max(U1, . . . , U2n+1) 6 x
)

= P ([U1 6 x] ∩ [U2 6 x] ∩ · · · ∩ [U2n+1 6 x])

où , désigne une intersection. Par mutuelle indépendance des variables aléatoires U1,
. . . , U2n+1 on a donc :

G2n+1(x) = P (U1 6 x)︸ ︷︷ ︸
=FU (x)

×P (U2 6 x)︸ ︷︷ ︸
=FU (x)

× · · · × P (U2n+1 6 x)︸ ︷︷ ︸
=FU (x)

=
(
FU (x)

)2n+1
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Bilan :

G2n+1(x) =


0 si x < 0

x2n+1 si 0 6 x 6 1

1 si x > 1

3. (a) V1 désigne le temps d’arrivée de la première personne. Autrement dit : V1 = min(U1, . . . , U2n+1)

(b) Pour tout x ∈ R on a :

P (V1 > x) = P
(

min(U1, . . . , U2n+1) > x
)

= P (U1 > x,U2 > x, . . . , U2n+1 > x)

Par mutuelle indépendance des variables aléatoires U1, . . . , U2n+1 on a donc :

P (V1 > x) = P (U1 > x)︸ ︷︷ ︸
=1−FU (x)

×P (U2 > x)︸ ︷︷ ︸
=1−FU (x)

× · · · × P (U2n+1 > x)︸ ︷︷ ︸
=1−FU (x)

=
(

1− FU (x)
)2n+1

On a donc :

G1(x) = P (V1 6 x) = 1− P (V1 > x) = 1−
(

1− FU (x)
)2n+1

Bilan :

G1(x) =


0 si x < 0

1− (1− x)2n+1 si 0 6 x 6 1

1 si x > 1

4.

n = input(’Entrez la valeur de n : ’)
U = rd.uniform(0,1,2*n+1)
Vpremier=np.min(U) #V1
Vdernier=np.max(U) #V_{2n+1}

5. (a) Pour tout x ∈ [0; 1] on a :
Gn+1(x) = P (Vn+1 6 x)

L’événement [Vn+1 6 x] est réalisé si et seulement si, au moins n + 1 personnes sont
arrivées avant le temps x. Pour tout k ∈ Jn+ 1; 2n+ 1K on note Rk l’événement :

Rk : exactement k personnes sont arrivées avant le temps x

On a donc :
[Vn+1 6 x] = Rn+1 tRn+2 t · · · tR2n+1

où t désigne une union disjointe. On a donc :

Gn+1(x) = P (Rn+1 tRn+2 t · · · tR2n+1) =

2n+1∑
k=n+1

P (Rk) (1)

Soit k ∈ Jn+ 1; 2n+ 1K. On va montrer que :

P (Rk) =

(
2n+ 1

k

)
xk(1− x)2n+1−k
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On note Ek l’ensemble des sous-ensembles de J1; 2n+ 1K ayant exactement k éléments.
On a donc :

Rk =
⊔
J∈Ek

(⋂
i∈J

[Ui 6 x]

)
∩

 ⋂
i∈J1;2n+1K\J

[Ui > x]


On a donc, par mutuelle indépendance des variables aléatoires U1, . . . , U2n+1 :

P (Rk) =
∑
J∈Ek

∏
i∈J

P (Ui 6 x)︸ ︷︷ ︸
xk

×
∏

i∈J1;2n+1K\J

P (Ui > x)

︸ ︷︷ ︸
(1−x)2n+1−k

=
∑
J∈Ek

xk(1− x)2n+1−k

Enfin, l’ensemble Ek est de cardinal
(

2n+ 1

k

)
. On a donc bien :

P (Rk) =

(
2n+ 1

k

)
xk(1− x)2n+1−k (2)

Les égalités (1) et (2) donnent le résultat souhaité :

Gn+1(x) =

2n+1∑
k=n+1

(
2n+ 1

k

)
xk(1− x)2n+1−k

(b) Comme Vn+1 est à valeurs dans [0; 1] on a aussi : pour tout x < 0 : Gn+1(x) = 0 et
pour tout x > 1 : Gn+1(x) = 1. Gn+1 est de classe C1 sur R sauf éventuellement en 0
et en 1. On trouve une densité gn+1 de Vn+1 en dérivant Gn+1 en tout point x 6= 0, 1.
Donc si x < 0 ou x > 0 : gn+1(x) = 0. Et si x ∈]0; 1[, par linéarité de la dérivation :

gn+1(x) =
2n+1∑
k=n+1

(
2n+ 1

k

)(
kxk−1(1− x)2n+1−k − (2n+ 1− k)xk(1− x)2n−k

)
donc

gn+1(x) =

2n+1∑
k=n+1

(
2n+ 1

k

)
kxk−1(1− x)2n+1−k

︸ ︷︷ ︸
on note S1 cette somme

−
2n+1∑
k=n+1

(
2n+ 1

k

)
(2n+ 1− k)xk(1− x)2n−k︸ ︷︷ ︸

on note S2 cette somme

On ré-écrit la somme S1 :

S1 =

2n+1∑
k=n+1

(2n+ 1)!

k!(2n+ 1− k)!
kxk−1(1−x)2n+1−k =

2n+1∑
k=n+1

(2n+ 1)!

(k − 1)!(2n+ 1− k)!
xk−1(1−x)2n+1−k

On ré-écrit maintenant la somme S2. Comme le terme (2n + 1 − k) vaut 0 pour
k = 2n+ 1, on a :

S2 =

2n∑
k=n+1

(
2n+ 1

k

)
(2n+1−k)xk(1−x)2n−k =

2n∑
k=n+1

(2n+ 1)!

k!(2n+ 1− k)!
(2n+1−k)xk(1−x)2n−k

=

2n∑
k=n+1

(2n+ 1)!

k!(2n− k)!
xk(1− x)2n−k
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On fait un changement d’indice i = k + 1. On obtient :

S2 =

2n+1∑
i=n+2

(2n+ 1)!

(i− 1)!(2n+ 1− i)!
xi−1(1− x)2n+1−i

On a donc :

gn+1(x) =
2n+1∑
k=n+1

(2n+ 1)!

(k − 1)!(2n+ 1− k)!
xk−1(1−x)2n+1−k−

2n+1∑
i=n+2

(2n+ 1)!

(i− 1)!(2n+ 1− i)!
xi−1(1−x)2n+1−i

Il ne reste que le terme k = n+ 1 de la première somme :

gn+1(x) =
(2n+ 1)!

n!n!
xn(1− x)n

Enfin on pose gn+1(0) = gn+1(1) =
(2n+ 1)!

(n!)2
0n. On a obtenu la densité suivante de

Vn+1 :

gn+1(x) =


(2n+ 1)!

(n!)2
xn(1− x)n si 0 6 x 6 1

0 si non

On reconnaît la fonction bn, densité de Xn.
Bilan : les variables aléatoires Xn et Vn+1 ont la même densité donc elles ont la même loi

(c) Le programme renvoie la valeur médiane du tableau U c’est-à-dire 8 En effet :

1 6 2 6 5 6 8 6 9 6 13 6 23

(d) D’après la question 12.b, il suffit de simuler la variable aléatoire Vn+1, c’est-à-dire la
valeur médiane de U1, . . . , U2n+1. D’où le programme suivant :

n = int(input(’Entrez la valeur de n : ’))
U = rd.uniform(0,1,2*n+1)
X = np.median(U) # simulation de Xn
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