
Corrigé du DM n◦ 11

Adapté de EML 2020 - Problème 2

PARTIE A : Etude d’un produit scalaire

1. Soit P ∈ R[X]. La fonction t 7→ P (t).e−t est continue sur R donc l’intégrale
∫ +∞

0
P (t)e−tdt

est impropre en +∞ uniquement.
Si P = 0, la convergence de l’intégrale est immédiate.
Si P 6= 0, alors il existe (a0, · · · , an) ∈ Rn+1 tels que

∀t ∈ R, P (t) = ant
n + · · ·+ a0 avec an 6= 0

Méthode 1 : plus rapide∫ +∞

0
P (t)e−tdt =

n∑
k=0

ak

∫ +∞

0
tk.e−t dt =

n∑
k=0

ak.Γ(k + 1)

et l’intégrale
∫ +∞
0 P (t)e−tdt est une combinaison linéaire d’intégrales convergentes (car

k + 1 > 0), donc converge.

Méthode 2 : via ot→+∞( 1
t2

)

|t2.P (t).e−t| ∼t→+∞ t2.|an||t|ne−t ∼t→+∞ |an||t|n+2e−t →t→+∞ 0

donc |P (t).e−t| = ot→+∞( 1
t2

).
Comme l’intégrale

∫ +∞
1

1
t2
dt converge (Riemann, α = 2 > 0), par critère de néglige-

abilité,
∫ +∞
1 P (t).e−tdt est absoument convergente, donc convergente. Enfin, l’intégrale∫ +∞

0
P (t)e−tdt converge.

Bilan : ∀P ∈ R[X], l’intégrale
∫ +∞

0
P (t)e−tdt converge

2. Pour tout k ∈ N, Ik =

∫ +∞

0
tke−tdt = Γ(k + 1) = k!

Remarque : le sujet EML faisait faire le calcul de Γ(k + 1) (intégration par parties +
récurrence) : il s’agissait donc d’une question de cours.

On admet que l’application définie par : pour tout (P,Q) de R[X]2,

〈P,Q〉 =

∫ +∞

0
P (t)Q(t)e−tdt

est un produit scalaire.

Remarque : l’énoncé EML le faisait démontrer : très classique mais attention aux argu-
ments pour la définie positivité !!

Dans toute la suite du problème, on munit R[X] de ce produit scalaire et on note ‖ · ‖
la norme associée.
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3. Pour tout (i, j) de N2,

〈
Xi, Xj

〉
=
∫ +∞
0 ti+je−tdt = Ii+j = (i+ j)!

4. (a) L’énoncé nous met gentiment sur la piste de la méthode de Schmidt. On applique donc
cette méthode, en partant de la base canonique (1, X,X2) de R2[X].
Comme ||1||2 = 〈1, 1〉 = 1 le vecteur Q0 = 1 est déjà normé et donc convient. On
considère ensuite

R1 = X − 〈X, 1〉 .1 = X − 1

car 〈X, 1〉 =
∫ +∞
0 t.e−t = 1. On calcule sa norme

||R1||2 = 〈X − 1, X − 1〉 = 〈X,X〉 − 2 〈X, 1〉+ 〈1, 1〉 = 2!− 2 + 1 = 1

donc R1 est normé et Q1 = R1 = X − 1 convient.
Enfin, on considère

R2 = X2 −
〈
1, X2

〉
.1−

〈
X − 1, X2

〉
.(X − 1)

= X2 − 2− (
〈
X,X2

〉
−
〈
1, X2

〉
).(X − 1)

= X2 − 2− (6− 2).(X − 1)

= X2 − 4X + 2

puis

‖R2‖2 =
〈
X2 − 4X + 2, X2 − 4X + 2

〉
=

〈
X2, X2

〉
− 4

〈
X2, X

〉
+ 2

〈
X2, 1

〉
− 4

〈
X,X2

〉
+16 〈X,X〉 − 8 〈X, 1〉+ 2

〈
X2, 1

〉
− 8 〈X, 1〉+ 4 〈1, 1〉

= 24− 8.6 + 20.2− 16 + 4

= 4

Donc ‖R2‖ = 2 et Q2 = 1
2(X2 − 4X + 2) = 1

2X
2 − 2X + 1 convient.

On retrouve bien le résultat fourni par l’énoncé !!

(b) Pour tout k de N, la famille Ck = (Q0, . . . , Qk) est une famille orthogonale de vecteurs
de Rk[X] non nuls, c’est donc une famille libre de vecteurs de Rk[X].
Comme de plus Card(Ck) = k + 1 = dim(Rk[X]), il s’agit bien d’une base de Rk[X].
Bilan : Ck est une base orthonormée de Rk[X]

5. (a) Étude du cas n = 2:

i. Pour tout i et j, hi,j = 〈Xi−1, Xj−1〉 = (i+ j − 2)!

Donc H2 =

0! 1! 2!
1! 2! 3!
2! 3! 4!

 =

1 1 2
1 2 6
2 6 24


Et

 3 −3 1
2

−3 5 −1
1
2 −1 1

4

1 1 2
1 2 6
2 6 24

 =

1 0 0
0 1 0
0 0 1


Donc H2 est inversible et H−12 =

 3 −3 1
2

−3 5 −1
1
2 −1 1

4


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ii. On a Q0 = 1, Q1 = X − 1 et Q2 = 1
2X

2 − 2X + 1.

1 = Q0 = 1Q0 + 0Q1 + 0Q2

X = (X − 1) + 1 = 1Q0 + 1Q1 + 0Q2

X2 = 2

(
1

2
X2 − 2X + 1

)
+ 4 (X − 1) + 2 = 2Q0 + 4Q1 + 2Q2

donc A2 =

1 1 2
0 1 4
0 0 2


D’où tA2 A2 =

1 0 0
1 1 0
2 4 2

1 1 2
0 1 4
0 0 2

 =

1 1 2
1 2 6
2 6 24

 = H2

(b) i. An est la matrice de passage de Cn dans Bn qui sont deux bases de Rn [X]

Donc An est inversible
ii. Par définition de la matrice An, les coefficients (ak,j)k∈[[1,n+1]] de la j-ème colonne

de An sont les coordonnées de Xj−1 dans la base Cn donc
∀j ∈ [[1;n+ 1]] , Xj−1 =

∑n+1
k=1 ak,jQk−1.

D’où ∀(i, j) ∈ [[1, n+ 1]]2,

〈
Xi−1, Xj−1〉 =

n+1∑
k=1

n+1∑
l=1

ak,ial,j 〈Qk−1, Ql−1〉

où 〈Qk−1, Ql−1〉 =

{
0 si k 6= l
1 si k = l

=

n+1∑
k=1

ak,iak,j

Bilan : ∀(i, j) ∈ [[1, n+ 1]]2, 〈Xi−1, Xj−1〉 =
∑n+1

k=1 ak,iak,j

iii. On a donc par définition du produit matriciel, d’une part pour tout (i, j) ∈ [[1, n+
1]]2, hi,j = 〈Xi−1, Xj−1〉 =

∑n+1
k=1 ak,iak,j

et d’autre part
(
tAnAn

)
i,j

=
∑n+1

k=1 ak,iak,j

Donc Hn = tAnAn.

(c) i. An est inversible donc tAn également et donc
Hn est inversible comme produit de matrices inversibles.

ii.
tHn = t

(
tAnAn

)
= tAn

t
(
tAn

)
= tAn An = Hn

Donc Hn est symétrique réelle donc diagonalisable.
iii. Soit α une valeur propre de Hn et Y un vecteur propre associé : Y 6= 0 et HnY =

αY . Alors
tY HnY = tY αY = α ‖Y ‖2

avec la norme canonique deMn+1,1 (R). D’autre part,

tY HnY = tY tAn AnY = t (AnY ) AnY = ‖AnY ‖2

toujours avec la norme canonique deMn+1,1 (R)).
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Comme‖Y ‖ 6= 0, α =
‖AnY ‖2

‖Y ‖2
.

Et comme An est inversible, et Y 6= 0 alors AnY 6= 0 donc ‖AnY ‖2 > 0 et α > 0.

Bilan : les valeurs propres de Hn sont strictement positives

PARTIE B : Etude d’une projection

Soit P un polynôme de R[X]. On définit la matrice colonne U =


〈P, 1〉
〈P,X〉

...
〈P,Xn〉

 ∈Mn+1,1(R).

1. (a) D’après l’énoncé, on a R =
∑n

k=0 αkX
k.〈

R,Xi
〉

=

n∑
k=0

αk

〈
Xk, Xi

〉
=

n∑
k=0

αk

〈
Xi, Xk

〉
(b)

R est le projeté orthogonal de P sur Rn [X] ⇐⇒
{
R ∈ Rn[X]
(P −R) ⊥ Rn[X]]

⇐⇒
{
R ∈ Rn[X]
∀i ∈ [[0, n]],

〈
P −R,Xi

〉
= 0

Comme R dans Rn [X] , on a donc : R est le projeté orthogonal de P sur Rn [X] ssi〈
P −R,Xi

〉
= 0, ssi

〈
P,Xi

〉
=
〈
R,Xi

〉
.

Bilan :
R est le projeté orthogonal de P sur Rn ssi ∀i ∈ [[0, n]],

〈
P,Xi

〉
=
〈
R,Xi

〉
On a alors ∀i ∈ [[0, n]],〈

R,Xi
〉

=
〈
P,Xi

〉
⇔

n∑
k=0

〈
Xi, Xk

〉
.αk =

〈
P,Xi

〉
⇔

n∑
k=0

hi+1,j+1.vk+1 = uk+1 où U = (uk), V = (vk)

⇔ (HnV )k+1 = Uk+1

donc HnV = U . La matrice Hn étant inversible, on en déduit bien que V = H−1n .U

2. Retour au cas n = 2:

(a) Avec les notations précédentes,

U =

 〈
X3, 1

〉〈
X3, X

〉〈
X3, X2

〉
 =

3!
4!
5!

 =

 6
24
120


D’après le A.4.(a) et le B.1.(b),

V = H−12 .U =

 3 −3 1
2

−3 5 −1
1
2 −1 1

4

 .

 6
24
120

 =

 6
−18

9


Donc le projeté orthogonal de X3 sur R2[X] est P = 9X2 − 18X + 6

N. Marconnet - Lycée Saint Just 4 Année 2025-2026



(b) On remarque que

min(a,b,c)∈R3f(a, b, c) = min(a,b,c)∈R3

∫ +∞

0
(a+ bt+ ct2 − t3)2e−tdt

= min(a,b,c)∈R3

∥∥a+ bX + cX2 −X3
∥∥

= minP∈R2[X]

∥∥P −X3
∥∥

D’après le théorème de minimisation par projection orthogonal, f admet un minimum
et ce minimum est atteint lorsque P est le projeté orthogonal de X3 sur R2[X].
D’après la question précédente, le minimum est atteint pour a = 6, b = −18 et c = 9

Remarque : le sujet EML faisait retrouver ce résultat via l’étude d’une fonction de trois
variables (cf dernier chapitre), par quelques questions calculatoires.
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