CHAPITRE 4 : INDEPENDANCE

T_	D	\mathbf{E}	\mathbf{F}	IN	JT	\mathbf{T}	T	N	N	I

A est <u>indépendant</u> de B \Leftrightarrow P_B(A) = P(A)

Cela signifie que la probabilité de réalisation de l'événement A (resp. B) n'est pas influencé par la réalisation ou non de B (resp. A)

Ne pas confondre évènement incompatible ($A \cap B = \emptyset$) et évènement indépendant

II- THEOREME

Dire que deux évènements sont indépendants si et seulement si $P(A \cap B) = P(B) \times P(A)$

Exemple : On tire une carte dans un jeu de 32 cartes.
On note les évènements suivants :
R: « tirer un roi »
N : « tirer une carte noire »
P: « tirer un pique »
Les évènements R et N sont ils indépendants ?
Les évènements R et P sont ils indépendants ?
Les évènements N et P sont ils indépendants ?

III- PROPRIETES

Soit (Ω, P) un espace probabilisé et A et B deux évènements

- **(1)** \emptyset et A sont indépendants
- Si A et B sont indépendants alors : **(2)**

A et B sont indépendants

A et B sont indépendants

 \overline{A} et \overline{B} sont indépendants

A,B et C sont mutuellement indépendants \Leftrightarrow **(3)**

 $P(A \cap B) = P(A) \times P(B)$

 $\begin{cases} P(A \cap C) = P(A) \times P(C) \\ P(B \cap C) = P(B) \times P(C) \\ P(A \cap B \cap C) = P(A) \times P(B) \times P(C) \end{cases}$