CORRECTION DU DEVOIR N°14

Exercice 1:

Attention les trois parties sont liées.

Partie I

Soit g la fonction définie par : $g(x) = x - \ln(x)$

1- Déterminer Dg

g existe $\Leftrightarrow x > 0$ donc $\mathbf{D}\mathbf{g} = \mathbb{R}^*_+$.

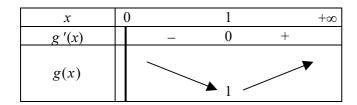
2- Étudier les variations de g et dresser le tableau de variation de g sans les limites. g est dérivable sur Dg comme somme de fonctions dérivables

$$\forall x \in Dg , g'(x) = 1 - \frac{1}{x} = \frac{x-1}{x}$$

 $\forall x \in Dg, x > 0 \text{ donc } g'(x) \text{ est du signe de } x - 1$

signe de
$$x-1$$
: $\xrightarrow{-}$ $\xrightarrow{+}$

Conclusion: g est décroissante sur]0,1[et est croissante sur $[1, +\infty[$



$$g(1) = 1 - \ln(1) = 1 - 0 = 1$$

3- Donner le minimum de g sur Dg

Le minimum de g est 1

4- En déduire le signe de g(x) sur Dg.

d'après le tableau de variation $\forall x \in Dg$, $g(x) \ge 1 > 0$.

Conclusion: g est positive sur Dg

Partie II

Soit f la fonction définie par : $f(x) = \frac{x^2}{2} + x - x \ln(x) + \frac{3}{2}$

On note & sa courbe représentative

1- <u>Déterminer Dg</u>

f existe $\Leftrightarrow x > 0$ donc $\mathbf{D}f = \mathbb{R}^*_+$.

2- Calculer f'(x) et l'écrire en fonction de g(x)

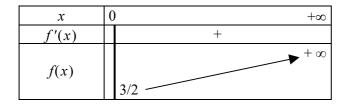
f est dérivable sur Df comme somme de fonctions dérivables

$$\forall x \in Df, f'(x) = 2 \times \frac{x}{2} + 1 - \left(1 \times \ln(x) + x \times \frac{1}{x}\right) + 0 = x + 1 - \ln(x) - 1 = x - \ln(x) = g(x)$$

3- En déduire le sens de variation de f et dresser le tableau de variation.

 $\forall x \in Df, f'(x) = g(x)$ et g est positive sur \mathbb{R}^*_+ d'après la question **I.4** donc $\forall x \in Df, f'(x) > 0$ et par suite f est croissante

Conclusion: f est croissante sur Df.



On donne $\lim_{x \to 0^+} f(x) = \frac{3}{2}$ et $\lim_{x \to +\infty} f(x) = +\infty$

4- Étudier la convexité de *f*

 $\forall x \in Df, f'(x) = x - \ln(x) = g(x)$

f' est dérivable sur Df comme somme de fonctions dérivables $\forall x \in Df$, f''(x) = g'(x). Le signe a été étudié à la question I.2

X	0		1	+ ∞	
f''(x) = g'(x)		-	φ -	+	
convexité		f est concave	point d'inflexion (1;3)	f est convexe	
<u> </u>	3	1+2+3 6	•		

$$f(1) = \frac{1}{2} + 1 - 0 + \frac{3}{2} = \frac{1 + 2 + 3}{2} = \frac{6}{2} = 3.$$

5- Déterminer l'équation de la tangente T à & au point A d'abscisse 1

Une équation cartésienne de la tangente T à \mathscr{C} au point d'abscisse 1 est donnée par T: y = f'(1)(x-1) + f(1) avec f'(1) = g(1) = 1 et f(1) = 3

Conclusion T:
$$y = 1(x-1) + 3 = x + 2$$
.

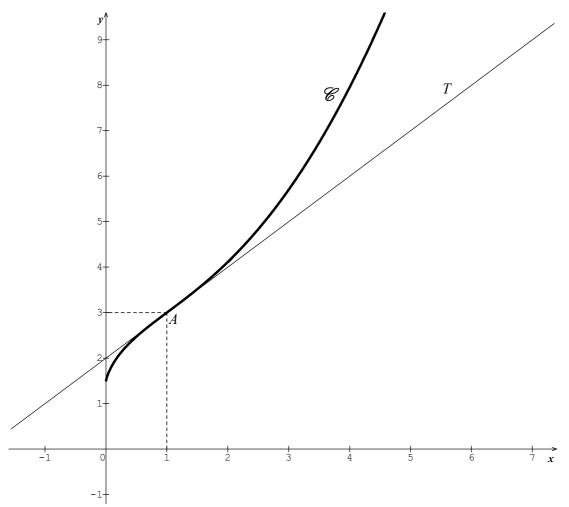
6- Étudier position relative de \mathscr{C} par rapport à T

Si $x \le 1$, f est concave donc \mathscr{C} est en dessous de T Si $x \ge 1$, f est convexe donc \mathscr{C} est au-dessus de T

Au point d'inflexion, & coupe sa tangente.

7- Construire & et T

 \mathscr{C} admet une branche parabolique de direction (Oy) en $+\infty$.



Remarque: A est un point d'inflexion donc la courbe & traverse sa tangente en A

Partie III

Une entreprise produit et commercialise un article. Sa capacité de production quotidienne est limitée à 5 milliers d'articles.

La fonction f modélise le coût total de production exprimé en milliers d'euros, où x désigne le nombre de milliers d'articles fabriqués.

On note C(x) le coût moyen de production exprimé en euros, par article fabriqué.

C est la fonction définie par $C(x) = \frac{f(x)}{x}$

1- Déterminer D_C ainsi que l'expression de C sur D_C

$$f(x) = \frac{x^2}{2} + x - x \ln(x) + \frac{3}{2}$$

$$C(x) = \frac{f(x)}{x} = \frac{x}{2} + 1 - \ln(x) + \frac{3}{2x}$$

C existe $\Leftrightarrow x > 0$ et $x \neq 0$ et la capacité de production quotidienne est limitée à 5 milliers d'articles donc $x \leq 5$

Conclusion:
$$D_C =]0,5]$$
 et $\forall x \in D_C$, $C(x) = \frac{x}{2} + 1 - \ln(x) + \frac{3}{2x}$

2- Étudier les variations de $C \operatorname{sur} D_C$

$$\forall x \in D_C, C(x) = \frac{x}{2} + 1 - \ln(x) + \frac{3}{2} \times \frac{1}{x}$$

C est dérivable sur D_C comme somme de fonctions dérivables

$$\forall x \in D_C, C'(x) = \frac{1}{2} - \frac{1}{x} + \frac{3}{2} \times \frac{-1}{x^2} = \frac{x^2 - 2x - 3}{2x^2} = \frac{(x+1)(x-3)}{2x^2}$$

 $\forall x \in D_C$, x > 0 donc x + 1 > 0 et $2x^2 > 0$ et par suite C'(x) est du signe de x - 3

signe de
$$x-3$$
: $\frac{}{}$ $\frac{}{}$ $\frac{}{}$ $\frac{}{}$ $\frac{}{}$ $\frac{}{}$ $\frac{}{}$ $\frac{}{}$ $\frac{}{}$ $\frac{}{}$

Conclusion: C est décroissante sur [0,3] et est croissante sur [3,5].

3- <u>Dresser le tableau de variation de C.</u> On donne $\lim_{x \to 0^+} C(x) = +\infty$

х	0		3		5
C'(x)		-	0	+	
C(x)	+∞		C(3)		C (5) ✓

$$C(3) = \frac{3}{2} + 1 - \ln(3) + \frac{3}{23} = \frac{3}{2} + 1 - \ln(3) + \frac{1}{2} = 3 - \ln(3)$$

$$C(5) = \frac{5}{2} + 1 - \ln(5) + \frac{3}{10} = \frac{38}{10} - \ln(5)$$

4- Quel est le prix de vente, à 0,1 euro près, d'un article en dessous duquel l'entreprise est certaine de ne pas faire de bénéfice ?

Le coût moyen minimal est $C(3) = 3 - \ln(3) \approx 1.9$

<u>Conclusion</u>: Le prix de vente ,à 0,1 euro près, d'un article en dessous duquel l'entreprise est certaine de ne pas faire de bénéfice est 1,9 ϵ .