LYCEE JEAN PERRIN **EC** 1

DEVOIR N°19 (A rendre le Lundi 28 avril)

Exercice 1:

Avant le début des travaux de construction d'une autoroute, une équipe d'archéologie préventive procède à des sondages successifs en des points régulièrement espacés sur le terrain.

Lorsque le *n*-ième sondage donne lieu à la découverte de vestiges, il est dit positif.

L'évènement : « le n-ième sondage est positif » est noté V_n , et on note p_n la probabilité de l'évènement V_n

L'expérience acquise au cours de ce type d'investigation permet de prévoir que :

- si un sondage est positif, le suivant a une probabilité égale à 0,6 d'être aussi positif;
- un sondage est négatif, le suivant a une probabilité égale à 0,9 d'être aussi négatif.

On suppose que le premier sondage est positif, c'est-à-dire : $p_1 = 1$

- 1- Calculer les probabilités des évènements suivants :

 - a) A: « les 2^{ème} et 3^{ème} sondages sont positifs » ;
 b) B: « les 2^{ème} et 3^{ème} sondages sont négatifs ».
- **2-** Calculer la probabilité p_3 pour que le $3^{\text{ème}}$ sondage soit positif.
- **3-** Pour tout entier naturel *n* non nul, établir que : $p_{n+1} = 0.5p_n + 0.1$
- **4-** Exprimer p_n en fonction de n.
- 5- Compléter les deux programmes Python qui demande n à l'utilisateur et qui affiche p_n

```
# Programme 1
                               # Programme 2
n=int(input('n='))
                               n=int(input('n='))
p=.....
                               for j .....
print(p)
```

6- Calculer la limite, quand n tend vers $+\infty$, de la probabilité p_n .

Exercice 2:

On considère la fonction f définie sur \mathbb{R} par: $f(x) = x - 2 + e^{-x}$. On nomme \mathscr{C} sa représentation graphique dans un repère orthonormé.

1- a) Calculer $\lim_{x \to \infty} f(x)$

Montrer que la courbe \mathscr{C} admet en $+\infty$ une droite asymptote D d'équation y=x-2

- **b)** Calculer $\lim_{x \to -\infty} f(x)$ puis $\lim_{x \to -\infty} \frac{f(x)}{x}$. Que pouvez-vous dire sur le comportement asymptotique de la courbe de f en $-\infty$?
- 2- Calculer f'(x) pour tout réel x. Dresser le tableau des variations de f en y faisant figurer les limites en $-\infty$ et en $+\infty$.
- 3- Justifier que \mathscr{C} coupe l'axe des abscisses en exactement deux points d'abscisses α et β , le premier étant positif, le deuxième étant négatif. Prouver que $\alpha \in]1,2[$.

4- Compléter le programme Python afin de déterminer un encadrement de α à 10^{-2} près

```
import numpy as np
def f(x):

a=....
b=....
while

m=....
if
....
print(a)
```

Attention les indentations ne sont pas forcement respectées

5- Tracer l'allure de \mathscr{C} et D. On donne $\alpha \approx 1,84$ et $\beta \approx -1,14$.