CORRECTION DU DEVOIR N°19

Exercice 1:

Avant le début des travaux de construction d'une autoroute, une équipe d'archéologie préventive procède à des sondages successifs en des points régulièrement espacés sur le terrain.

Lorsque le *n*-ième sondage donne lieu à la découverte de vestiges, il est dit positif.

L'évènement : « le n-ième sondage est positif » est noté V_n , on note p_n la probabilité de l'évènement V_n

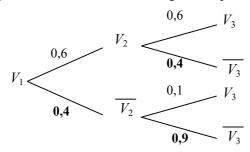
L'expérience acquise au cours de ce type d'investigation permet de prévoir que :

- □ si un sondage est positif, le suivant a une probabilité égale à 0,6 d'être aussi positif;
- si un sondage est négatif, le suivant a une probabilité égale à 0,9 d'être aussi négatif.

On suppose que le premier sondage est positif, c'est-à-dire : $p_1 = 1$

1- Calculer les probabilités des évènements suivants :

 $\overline{\mathbf{a}}$) \underline{A} : « les $2^{\text{ème}}$ et $3^{\text{ème}}$ sondages sont positifs »;



$$P(A) = P(V_2 \cap V_3) = P(V_2)P_{V_2}(V_3) = 0.6 \times 0.6 = 0.36$$

Conclusion: La probabilité que les 2ème et 3ème sondages sont positifs est 0,36.

b) B: « les 2^{ème} et 3^{ème} sondages sont négatifs ».

$$P(B) = P(\overline{V_2} \cap \overline{V_3}) = P(\overline{V_2})P_{\overline{V_2}} (\overline{V_3}) = 0.4 \times 0.9 = 0.36$$

Conclusion : La probabilité que les 2^{ème} et 3^{ème} sondages sont négatifs est 0,36.

2- Calculer la probabilité p_3 pour que le $3^{\text{ème}}$ sondage soit positif.

 V_2 et $\overline{V_2}$ forment un système complet d'événement donc d'après la formule des probabilités totales on a :

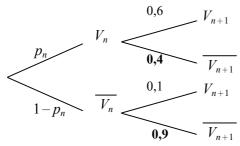
$$P(V_3) = P(V_3 \cap V_2) + P(V_3 \cap \overline{V_2})$$

$$= P(V_2)P_{V_2}(V_3) + P(\overline{V_2})P_{\overline{V_2}}(V_3)$$

$$= 0.36 + 0.4 \times 0.1 = 0.36 + 0.04 = 0.4$$

Conclusion: $p_3 = 0.4$.

3- Pour tout entier naturel *n* non nul, établir que : $p_{n+1} = 0.5p_n + 0.1$



 V_n et $\overline{V_n}$ forment un système complet d'événement donc d'après la formule des probabilités totales on a :

$$\forall n \in \mathbb{N}^*, p_{n+1} = P(V_{n+1}) = P(V_{n+1} \cap V_n) + P(V_{n+1} \cap \overline{V_n})$$

$$= P(V_n)P_{V_n}(V_{n+1}) + P(\overline{V_n})P_{\overline{V_n}}(V_{n+1})$$

$$= 0.6p_n + 0.1(1 - p_n) = 0.6p_n + 0.1 - 0.1p_n = 0.5p_n + 0.1$$

Conclusion: Pour tout entier naturel *n* non nul, $p_{n+1} = 0.5 p_n + 0.1$

4- Exprimer p_n en fonction de n.

 (p_n) est une suite arithmético-géométrique

• Recherche du point fixe

$$x = 0.5x + 0.1 \Leftrightarrow x - 0.5x = 0.1 \Leftrightarrow x = \frac{0.1}{0.5} = \frac{1}{5} = \frac{2}{10} = 0.2$$

• Suite auxiliaire

On définie la suite (v_n) par $\forall n \in \mathbb{N}^*, v_n = p_n - 0.2$

Montrons que (v_n) est une suite géométrique.

$$\forall n \in \mathbb{N}^*, v_{n+1} = p_{n+1} - 0.2 = 0.5p_n + 0.1 - 0.2 = 0.5p_n - 0.1 = 0.5(p_n - 0.2) = 0.5v_n$$

Donc (v_n) est une suite géométrique de raison q = 0.5 et de premier terme $v_1 = p_1 - 0.2 = 1 - 0.2 = 0.8$ $\forall n \in \mathbb{N}^*, v_n = v_1 \times q^{n-1} = 0.8(0.5)^{n-1}$

• Expression de p_n

 $\forall n \in \mathbb{N}^*, p_n = v_n + 0.2 = 0.8(0.5)^{n-1} + 0.2$

Conclusion: $\forall n \in \mathbb{N}^*, p_n = v_n + 0.2 = 0.8(0.5)^{n-1} + 0.2$

5- Compléter les deux programmes scilab qui demande n à l'utilisateur et qui affiche p_n

```
# Programme 1
n=int(input('n='))
p=1 # p1
for j in range (2,n+1):
    p=0.5*p+0.1
print(p)
```

Programme 2
n=int(input('n='))
p=0.8*(0.5)**(n-1)+0.2
print(p)

6- Calculer la limite, quand n tend vers $+\infty$, de la probabilité p_n .

$$\lim_{n \to +\infty} p_n = 0.2 \text{ car } \lim_{n \to +\infty} (0.5)^{n-1} = 0 \ (-1 < 0.5 < 1)$$

Exercice 2:

On considère la fonction f définie sur \mathbb{R} par: $f(x) = x - 2 + e^{-x}$. On nomme \mathscr{C} sa représentation graphique dans un repère orthonormé.

1- a) Calculer $\lim_{x \to +\infty} f(x)$

Montrer que la courbe \mathscr{C} admet en $+\infty$ une droite asymptote D d'équation y=x-2.

$$\lim_{x \to +\infty} f(x) = +\infty \text{ car } \begin{cases} \lim_{x \to +\infty} (x-2) = +\infty \\ \lim_{x \to +\infty} e^{-x} = 0 \end{cases}$$

donc étude des branches infinies

Soit *D* la droite d'équation
$$y = x - 2$$

$$\lim_{x \to +\infty} (f(x) - y_D) = \lim_{x \to +\infty} ((x - 2 + e^{-x}) - (x - 2)) = \lim_{x \to +\infty} e^{-x} = 0$$

Conclusion: la droite D d'équation y=x-2 est asymptote à \mathscr{C} en $+\infty$

Étudier la position relative de \mathscr{C} et D revient à étudier le signe de $f(x)-y_d=e^{-x}$ Or $\forall x \in \mathbb{R}, e^{-x}>0$

Conclusion : \mathscr{C} est au-dessus de D.

b) Calculer $\lim_{x \to -\infty} f(x)$ puis $\lim_{x \to -\infty} \frac{f(x)}{x}$. Que pouvez-vous dire sur le comportement asymptotique de la courbe de f en $-\infty$?

Pour enlever la forme indéterminée en $-\infty$, je factorise par le terme prépondérant : e^{-x}

$$\forall x \in \mathbb{R}, f(x) = x - 2 + e^{-x} = x - 2 + \frac{1}{e^{-x}} = \frac{xe^x - 2e^x + 1}{e^x}$$

$$\lim_{x \to -\infty} f(x) = +\infty$$
 car
$$\begin{cases} \lim_{x \to -\infty} e^{x} = 0^{+} \\ \lim_{x \to -\infty} (xe^{x} - 2e^{x} + 1) = 1 \end{cases}$$
 car
$$\begin{cases} \lim_{x \to -\infty} xe^{x} = 0 \text{ (croissances comparées)} \\ \lim_{x \to -\infty} (-2e^{x} + 1) = 1 \end{cases}$$

donc étude des branches infinies

$$\forall x \in \mathbb{R}, \frac{f(x)}{x} = \frac{1}{xe^x}(xe^x - 2e^x + 1)$$

$$\lim_{x \to -\infty} \frac{f(x)}{x} = -\infty \quad \text{car} \begin{cases} \lim_{x \to -\infty} \frac{1}{xe^x} = -\infty & \text{car } \lim_{x \to -\infty} xe^x = 0^- \text{ (croissances comparées)} \\ \lim_{x \to -\infty} (xe^x - 2e^x + 1) = 1 \end{cases}$$

Conclusion:
$$\lim_{x \to -\infty} f(x) = +\infty$$
, $\lim_{x \to -\infty} \frac{f(x)}{x} = -\infty$

\mathscr{C} admet une branche parabolique de direction (Oy) en $-\infty$

2- Calculer f'(x) pour tout réel x. Dresser le tableau des variations de f en y faisant figurer les limites en $-\infty$ et en $+\infty$.

f est dérivable sur $\mathbb R$ comme somme de fonctions dérivables

$$\forall x \in \mathbb{R}, f'(x) = 1 - e^{-x}$$

Pour étudier le signe de $1 - e^{-x}$, je vais résoudre une inéquation, par exemple $1 - e^{-x} \ge 0$

$$1-e^{-x} \ge 0$$

$$e^{-x} \le 1$$

 $-x \le 0$ car $x \mapsto \ln(x)$ est strictement croissante sur \mathbb{R}^*_+ $x \ge 0$

d'où le tableau de variations de f

our to the four the full interests are y						
	X	8	β	0	α	$+\infty$
	f'(x)		_	0	+	
		+∞ ,			_	+∞
	f(x)		θ_		0	
				▲ -1 ∕		

$$f(0) = 0 - 2 + e^0 = -2 + 1 = -1.$$

3- Justifier que & coupe l'axe des abscisses en exactement deux points d'abscisses α et β, le premier étant positif, le deuxième étant négatif.

On donne $e \approx 2.7$. Prouver que $\alpha \in [1,2]$.

La question revient à montrer que l'équation f(x) = 0 admet deux solutions sur \mathbb{R} . Pour cela, on va appliquer le théorème de la bijection deux fois.

\Box Étude sur $]-\infty$;0]

f est continue sur \mathbb{R}^- car dérivable f est strictement décroissante sur \mathbb{R}^- (voir tableau de variations) $\lim_{x \to -\infty} f(x) = +\infty$ et f(0) = -1 donc f réalise donc une bijection de \mathbb{R}^- sur $f(\mathbb{R}^-) = [-1; +\infty[$

De plus $0 \in [-1; +\infty[$

Donc l'équation f(x)=0 admet une unique solution $\beta \in \mathbb{R}$

□ Étude sur $[0;+\infty[$

f est continue sur \mathbb{R}^+ car dérivable f est strictement décroissante sur \mathbb{R}^+ (voir tableau de variations) $\lim_{x \to +\infty} f(x) = +\infty \quad \text{et} \quad f(0) = -1$ donc f réalise donc une bijection de \mathbb{R}^+ sur $f(\mathbb{R}^+) = [-1; +\infty[$ De plus $0 \in [-1; +\infty[$

Donc l'équation f(x)=0 admet une unique solution $\alpha \in \mathbb{R}^+$.

```
De plus f(1) = -1 et f(2) = 2 - 2 + e^{-2} = e^{-2}
D'où f(1) < 0 et f(2) > 0 donc \alpha \in ]1; 2[
```

Conclusion: \mathscr{C} coupe l'axe des abscisses en exactement deux points d'abscisses α et β , le premier étant positif, le deuxième étant négatif. De plus $\alpha \in]1,2[$.

4- Compléter le programme Python afin de déterminer un encadrement de α à 10^{-2}

5- Tracer l'allure de \mathscr{C} et D. On donne $\alpha \approx 1.84$ et $\beta \approx -1.14$.

