## ECT1



# **TP 09: Instructions conditionnelles**

| Ex | ercice 1: Révision                                                                              |
|----|-------------------------------------------------------------------------------------------------|
|    | t $(u_n)$ la suite définie par $u_n = \frac{n^3}{n+3}$                                          |
|    | Écrire un programme Python qui demande $n$ et affiche la valeur de $u_n$                        |
|    |                                                                                                 |
|    |                                                                                                 |
|    |                                                                                                 |
|    |                                                                                                 |
|    |                                                                                                 |
|    |                                                                                                 |
|    |                                                                                                 |
| 2- | Modifier le programme précédent pour qu'il affiche les 1000 premières valeurs de $u_n$ . Quelle |
|    | semble être la limite de $(u_n)$                                                                |
|    |                                                                                                 |
|    |                                                                                                 |
|    |                                                                                                 |
|    |                                                                                                 |
|    |                                                                                                 |
|    |                                                                                                 |
|    |                                                                                                 |

| 3-        | Modifier le programme pour qu'il trouve le plus petit entier $n$ tel que $u_n > 10^{10}$ |
|-----------|------------------------------------------------------------------------------------------|
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |
| <u>Ex</u> | ercice 2: Sialors                                                                        |
| 1-        | Taper le programme puis l'enregistrer                                                    |
|           | Exécuter ce programme en prenant x=4 et noter ce qu'il affiche                           |
|           | import numpy as np                                                                       |
|           | <pre>2 x=float(input('x=')) 3 if x&gt;=0:</pre>                                          |
|           | <pre>3</pre>                                                                             |
|           | print('la racine de ',x,'est',y))                                                        |
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |
| Re        | commencer avec $x = -1$ puis $x = 0$                                                     |
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |
| 2-        | On voudrait améliorer le script et afficher que racine de -1 n'existe pas.               |
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |
|           |                                                                                          |

les: indiquent que les instructions commencent. Ne jamais les oublier



#### Si.... alors....

if condition:

bloc d'instructions qu'il ne faut pas oublier d'indenter

si condition est vraie alors le programme fait les instructions indentées si la conditions est fausse alors le programme ne fait rien



#### Si ...alors.... sinon

if condition:

Instructions 1 qu'il ne faut pas oublier d'indenter

else

Instructions 2 qu'il ne faut pas oublier d'indenter

si condition est vraie alors le programme fait les Instructions 1 si la conditions est fausse alors le programme fait les Instructions 2 les: indiquent que les instructions commencent. Ne jamais les oublier



#### Si ...alors.... sinon si ......sinon

if condition 1:

Instructions 1 qu'il ne faut pas oublier d'indenter

elif condition 2:

Instructions 2 qu'il ne faut pas oublier d'indenter

else :

Instructions 3 qu'il ne faut pas oublier d'indenter

si condition 1 est vraie alors le programme fait les Instructions 1 si la condition 1 est fausse alors

soit la condition 2 est vraie alors le programme fait les Instructions 2 soit la condition 2 est fausse alors le programme fait les Instruction 2

## Remarques:

- on peut imbriquer autant de elif que l'on veut
- ▶ if , elif et else doivent être au même niveau donc pas indenter.

#### Exercice 3: et/ou

Lire le programme suivant . Il n'est PAS demandé de le taper dans EduPython

```
1  x=float(input('x='))
2  if (x>0) and (x<=5):
3    print('oui')
4  else:
5    print('non')</pre>
```

| 1- | Que va renvoyer ce programme si i utilisateur propose la valeur x=3 ?    |
|----|--------------------------------------------------------------------------|
|    |                                                                          |
| 2- | Que va renvoyer ce programme si l'utilisateur propose la valeur x=5 ?    |
|    |                                                                          |
| 3- | Que va renvoyer ce programme si l'utilisateur propose la valeur x=-1,2 ? |
|    |                                                                          |
| 4- | Que va renvoyer ce programme si l'utilisateur propose la valeur x=6?     |
|    |                                                                          |
| 5- | Comment résumer ce programme                                             |
|    |                                                                          |



## Opérateurs de comparaison

La condition évaluée après l'instruction if peut contenir les *opérateurs de comparaison* suivants :

```
x == y  # x est égal à y donc le égal des maths

x != y  # x est différent de y

x > y  # x est plus grand que y

x < y  # x est plus petit que y

x >= y  # x est plus grand ou égal à y

x <= y  # x est plus petit ou égal à y
```

and: Permet d'effectuer une instruction si deux tests sont vérifiés simultanément. or: Permet d'effectuer une instruction si au moins un test sur deux est vérifié.

## Exercice 4:

Donner la valeur de *b* dans les différents programmes si la variable *a* avait pour valeur 1

```
1  # Programme 1
2  if a < 0 :
3     b=2*a
4  else :
5     b=3*a</pre>
```

```
1  # Programme 2
2  if a >= 1 :
3     b=a-1
4  else :
5    b=2*a
```

```
1  # Programme 3
2  if a == 0 :
3     b=a+1
4  else :
5    b=a+2
```

```
# Programme 4
i    if a != 1 :
    b=a/2
```

## Exercice 5: 1er test

Écrire un programme qui demande à l'utilisateur sa date de naissance, et qui affiche en fonction l'information majeur ou mineur.

## **Exercice 6**: max ou min

Écrire un programme qui demande deux réels a et b à l'utilisateur, et qui affiche le plus grand des deux

| <u>Exercice <b>7</b> : Equation du second degré</u><br>Écrire un script Python qui demande les valeurs de a,b,c à l'utilisateur puis qui calcule delta et qu |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| affiche selon la valeur de delta l'équation a 0,1 ou 2 solutions                                                                                             |  |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |  |