Interrogation $I_3(A)$

Exercice I: Suites

On considère la suite arithmético-géométrique définie par $u_0=2$ et, pour tout $n\in\mathbb{N}$ $u_{n+1}=4u_n-5$

- 1. Justifier que $(u_n)_{n\in\mathbb{N}}$ n'est pas arithmétique.
- 2. Résoudre l'équation x = 4x 5 d'inconnue $x \in \mathbb{R}$
- 3. On pose $t_n = u_n \frac{5}{3}$. Démontrer que la suite $(t_n)_{n \in \mathbb{N}}$ est géométrique et préciser sa raison.
- 4. Déterminer une forme explicite de t_n en fonction de $n \in \mathbb{N}$ et en déduire u_n sous forme explicite.

Exercice II: Sommes

- 1. Calculer $S = 10 + 12 + 14 + \cdots + 1024$
- 2. En fonction de $n \in \mathbb{N}^*$, donner une écriture simplifiée de : $T_n = 1 + \frac{5}{3} + \left(\frac{5}{3}\right)^2 + \dots + \left(\frac{5}{3}\right)^{n+2}$

Exercice III : Second degré

- 1. Résoudre l'équation (E): $3x^2 7x + 12 = x^2 + 8x 9$ d'inconnue $x \in \mathbb{R}$
- 2. On pose $f(x) = x^2 5x + 1$. Dresser le tableau des signes de f sur \mathbb{R} .

Interrogation $I_3(B)$

Exercice I: Suites

On considère la suite arithmético-géométrique définie par $v_0=-1$ et, pour tout $n\in\mathbb{N}$ $v_{n+1}=\frac{1}{2}u_n+3$

- 1. Justifier que $(v_n)_{n\in\mathbb{N}}$ n'est pas arithmétique.
- 2. Résoudre l'équation $x = \frac{x}{3} + 3$ d'inconnue $x \in \mathbb{R}$
- 3. On pose $t_n = v_n \frac{9}{2}$. Démontrer que la suite $(t_n)_{n \in \mathbb{N}}$ est géométrique et préciser sa raison.
- 4. Déterminer une forme explicite de t_n en fonction de $n \in \mathbb{N}$ et en déduire v_n sous forme explicite.

Exercice II: Sommes

- 1. Calculer $S = -4 3 2 1 + 1 + 2 + \dots + 5050$
- 2. En fonction de $n \in \mathbb{N}^*$, donner une écriture simplifiée de : $T_n = \frac{2}{7} + \left(\frac{2}{7}\right)^2 + \cdots + \left(\frac{2}{7}\right)^2$

Exercice III : Second degré

- 1. Résoudre l'équation (E): $4x^2 7x 2 = x^2 + x + 1$ d'inconnue $x \in \mathbb{R}$
- 2. On pose $g(x) = x^2 5x + 1$. Déterminer les coordonnées du sommet de la parabole représentant q en repère orthonormé et décrire les variations de g (on pourra résumer sous la forme d'un tableau)