Interrogation $I_3(A)$

Exercice I : Matrice Inverse

On donne la matrice
$$P = \begin{pmatrix} 1 & 2 & 1 \\ -1 & -3 & -1 \\ -2 & -4 & -1 \end{pmatrix}$$
.

Au moyen de la méthode du pivot de Gauss, établir l'inversibilité de P et expliciter la matrice inverse P^{-1} .

Exercice II : Couple

On donne le tableau ci-contre de loi conjointe d'un couple (X;Y) de variables aléatoires :

- 1. Identifier les ensembles $X(\Omega)$ ainsi que $Y(\Omega)$
- 2. Déterminer la valeur du réel \boldsymbol{b}
- 3. En justifiant, décrire les lois marginales de X et de Y respectivement
- 4. Calculer la valeur de $\mathbb{E}[XY]$. On pourra exprimer le résultat au moyen de la lettre b

x y	1	2	4
-1	$\frac{1}{12}$	$\frac{1}{4}$	0
0	0	$\frac{1}{6}$	$\frac{1}{24}$
2	$\frac{1}{6}$	0	a

Exercice III : Série

On considère la série $S=\sum_{k\geq 2}\frac{2^n}{4^{n-2}}.$ Justifier que la série S converge puis calculer sa somme.

Interrogation $I_3(B)$

1

Exercice I : Matrice Inverse

On donne la matrice
$$Q = \begin{pmatrix} 1 & 2 & -1 \\ -1 & -1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$
.

Au moyen de la méthode du pivot de Gauss, établir l'inversibilité de Q et expliciter la matrice inverse Q^{-1} .

Exercice II: Couple

On donne ci-contre le tableau de loi conjointe d'un couple (X;Y) de variables aléatoires

- 1. Identifier les ensembles $X(\Omega)$ ainsi que $Y(\Omega)$
- 2. Déterminer la valeur du réel b
- 3. En justifiant, décrire les lois marginales de X et de Y respectivement
- 4. Calculer la valeur de $\mathbb{E}[XY]$.

 On pourra exprimer le résultat au moyen de la lettre h

x y	-1	1	2
2	$\frac{1}{4}$	$\frac{1}{12}$	0
3	0	b	$\frac{1}{24}$
5	$\frac{1}{6}$	0	$\frac{1}{6}$

Exercice III: Série

On considère la série $T=\sum_{k>3}\frac{3^{n-1}}{6^{n-3}}.$ Justifier que la série T converge puis calculer sa somme.