### Lvcée Turgot ECT2 - S4 2024 / 2025

# Suites de VAR

Exercice 1 | Inégalité de Markov Le but de cet exercice est de démontrer l'inégalité de Markov (rappelée ci-dessous) dans les cas de variables aléatoires discrètes (infinies) ou encore à densité, soit encore d'établir que, si X est une VAR positive définie sur un espace de probabilité  $(\Omega; \mathcal{P}(\Omega); \mathbb{P})$  alors :

$$\forall a > 0 \quad \mathbb{P}[X \ge a] \le \frac{\mathbb{E}[X]}{a}$$

1. Cas où X est discrète

Dans cette question, on suppose que  $X(\Omega) = \{x_i ; i \in \mathbb{N}\} \subset \mathbb{R}_+$  et que X admet une espérance. On considère a > 0fixé et on note  $A = [X \ge a]$ . On introduit :

$$I(a) = \{i \in \mathbb{N} ; x_i < a\}$$
 et  $J(a) = \{j \in \mathbb{N} ; x_j \ge a\}$ 

- (a) Déterminer les ensembles  $I(A) \cup J(A)$  et  $I(A) \cap J(A)$ .
- (b) Etablir que  $\mathbb{P}[A] = \sum_{j \in J(A)} \mathbb{P}[X = x_j]$
- (c) Simplifier au mieux  $\sum_{i \in I(A)} x_i \mathbb{P}[X = x_i] + \sum_{j \in J(A)} x_j \mathbb{P}[X = x_j]$
- (d) Justifier que l'on a  $\sum_{j\in J(A)} x_j \mathbb{P}[X=x_j] \geq a \mathbb{P}[X\geq a]$
- (e) En déduire que  $\mathbb{E}[X] \ge a\mathbb{P}[A]$  et conclure.
- 2. Cas où X est à densité

Dans cette question, on suppose que X une variable aléatoire positive à densité. On désignera pas f une densité de X. Comme X est positive, on peut supposer f est nulle sur  $]-\infty,0[$ . On considère que X admet une espérance. Soit a un réel strictement positif.

- (a) Justifier, pour tout x de  $[a, +\infty[$ , l'inégalité :  $a\int_a^x f(t) dt \le \int_a^x t f(t) dt$ .
- (b) En déduire l'inégalité :  $a\mathbb{P}[X\geq a]\leq \int_{a}^{+\infty}tf(t)\,\mathrm{d}t.$
- (c) Etablir que  $\mathbb{E}[X] \ge \int_{-\infty}^{+\infty} t f(t) dt$
- (d) Peut-on aussi conclure que  $\mathbb{P}[X > a] \leq \frac{\mathbb{E}(X)}{c}$ ?

## Exercice 2 Inégalité de Bienaymé-Tchebycheff

L'inégalité de Bienaymé-Tchebycheff est donnée pour une variable aléatoire X définie sur un espace de probabilités  $(\Omega; \mathcal{P}(\Omega); \mathbb{P})$ , admet une espérance ainsi qu'une variance :

$$\forall \varepsilon > 0 \ \mathbb{P}[|X - \mathbb{E}[X]| \ge \varepsilon] \le \frac{\mathbb{V}[X]}{\varepsilon^2}$$

On pourra supposer connue l'inégalité de Markov dans cet exercice.

- 1. On pose  $Y = |X \mathbb{E}[X]|^2$ . Vérifier que Y est une variable aléatoire positive qui possède une espérance que l'on décrira le plus simplement possible.
- 2. Etablir que, pour tout  $\varepsilon > 0$ , les événements  $[|X \mathbb{E}[X]| \ge \varepsilon]$  et  $[Y \ge \varepsilon^2]$  sont équiprobables.
- 3. En déduire que, pour tout  $\varepsilon > 0$ ,  $\mathbb{P}[|X \mathbb{E}[X]| \ge \varepsilon] \le \frac{\mathbb{E}[Y]}{\varepsilon^2}$
- 4. Conclure.

#### Chapitre X $M^r$ Hemon

Exercice 3 On considère une pièce biaisée dont la probabilité de faire pile est  $p \in ]0;1[$ . On effectue un suite de lancers supposés mutuellement indépendants et on note  $X_k$  la VAR valant 1 si le k-ième lancer donne pile et 0 sinon.

- 1. Pour  $i \neq j$  éléments de  $\mathbb{N}^*$ , pourquoi peut-on considérer que les variables aléatoires  $X_i$  et  $X_j$  sont indépendantes?
- 2. On note  $Z_n$  la variable aléatoire définie par  $Z_n = X_1 + \cdots + X_n$  pour  $n \in \mathbb{N}^*$ .
  - (a) Déterminer les lois de  $Z_1$ ,  $Z_2$  et  $Z_3$ .
  - (b) De façon générale, décrire l'ensemble  $Z_n(\Omega)$  des valeurs prises par  $Z_n$  pour  $n \in \mathbb{N}^*$ .
  - (c) Pour  $n \geq 3$  donné, on considère un événement de type E comme un événement de la forme :

$$[X_1 = b_1] \cap [X_2 = b_2] \cap \cdots \cap [X_n = b_n]$$

où les nombres  $b_1$ ; ...;  $b_n$  sont chacun dans  $\{0;1\}$ . Combien d'événements de type E distincts peut-on former?

- (d) On considère un événement de type E dans lequel exactement k valeurs parmi  $b_1, \ldots, b_n$  valent 1 (avec  $k \le n$ ). Combien de tels événements distincts peut-on former? Justifier que ces événements ont tous même probabilité  $p^k(1-p)^{n-k}$ .
- (e) Décrire l'événement  $[Z_n = k]$  à l'aide d'événements de type E et en déduire  $\mathbb{P}[Z_n = k]$  en fonction de n et de k.
- 3. En déduire la loi de  $Z_n$  (c'est une loi usuelle).
- 4. On pose  $M_n = \frac{1}{n} Z_n$  pour  $n \in \mathbb{N}^*$ . Déterminer les valeurs de  $\mathbb{E}[M_n]$  ainsi que  $\mathbb{V}[M_n]$ .

**Exercice** 4 1. Soit X une variable aléatoire d'espérance 3 et de variance 2. On définit  $Z = X^2$  et Y = 5 - 3X.

- (a) Déterminer l'espérance de Y ainsi que l'espérance de Z.
- (b) Déterminer la variance de Y.
- (c) Calculer cov(X;Y)
- 2. On considère de plus une variable aléatoire T telle que cov(X;T)=-2
  - (a) Déterminer cov(Y;T). En déduire cov(5T-2Y;X-2T).
  - (b) On note  $v = \mathbb{V}[T]$ . Exprimer cov(X + T; Y T) en fonction de v.

**Exercice**  $|\mathbf{5}|$  1. Soit U une variable aléatoire d'espérance -1 et de variance 3. On définit  $V = U^2$  et W = 4 - 5U.

- (a) Déterminer l'espérance de V ainsi que l'espérance de W.
- (b) Déterminer la variance de W.
- (c) Calculer cov(U; W)
- 2. On considère de plus une variable aléatoire T telle que cov(U;T)=5
  - (a) Déterminer cov(W; T). En déduire cov(5T 2W; U 2T).
  - (b) On note  $t = \mathbb{V}[T]$ . Exprimer cov(U + T; W T) en fonction de t.

**Exercice** 6 Soient X, Y et T trois variables aléatoires avec X et Y indépendantes.

On suppose que l'on a : V(Y) = 5, Cov(Y,T) = 4 et Cov(T,X) = -1. Calculer Cov(5X + 2Y, 3T - 7Y).

**Exercice**  $|\mathbf{7}|$  Soient X, Y et T trois variables aléatoires avec X et Y indépendantes.

On suppose que l'on a : V(Y) = 4, Cov(Y, T) = 3 et Cov(T, X) = 2. Calculer Cov(2X - 3Y, 2T - 5Y).

**Exercice** 8 Soit n un entier strictement positif. Soient  $X_n$ ,  $Y_n$  et  $Z_n$  trois variables aléatoires qui suivent toutes la loi binomiale de paramètres n et  $\frac{1}{3}$ . On suppose que l'on a  $X_n + Y_n + Z_n = n$ .

- 1. Déterminer la valeur de  $V(X_n + Y_n + Z_n)$  explicitement.
- 2. Démontrer que l'on a également  $V(X_n+Y_n+Z_n)=2\left(n+\operatorname{Cov}(X_n,Y_n)+\operatorname{Cov}(X_n,Z_n)+\operatorname{Cov}(Y_n,T_n)\right)$
- 3. Déterminer les valeurs de  $Cov(X_n, Y_n)$ ,  $Cov(X_n, Z_n)$  et  $Cov(Y_n, T_n)$

## Chapitre X

- $M^r$  Hemon
  - 4. Etablir que l'on a  $Cov(X_n; Y_n) = -\mathbb{V}[X_n] Cov(X_n; Z_n)$  et en déduire la valeur de  $Cov(X_n; Y_n) + Cov(X_n; Z_n)$  en fonction de  $n \in \mathbb{N}^*$ .
  - 5. Démontrer que  $Cov(X_n, Y_n) = Cov(X_n, Z_n) = Cov(Y_n, T_n)$ .
  - 6. En déduire la valeur commune de  $Cov(X_n, Y_n)$ ,  $Cov(X_n, Z_n)$  et  $Cov(Y_n, T_n)$

Exercice 9 D'après Concours ECT Un opérateur téléphonique propose 3 forfaits : le coût du forfait n°i coûte 10i euros par mois ( $i \le 3$ )

Un groupe de n ( $n \ge 2$ ) clients se rend dans une boutique de cet opérateur et chacun achète un de ces trois forfaits au hasard, avec équiprobabilité et sans être influencé par le choix des autres clients.

On note  $X_i$  égale au nombre de clients parmi ces n clients ayant choisi le forfait n°i les variables aléatoires, ainsi que H la somme globale mensuelle en euros versée par ces n clients à l'opérateur.

- 1. (a) Justifier que  $X_1$  suit une loi usuelle que l'on détaillera, en rappelant  $X_1(\Omega)$  et l'expression de  $\mathbb{P}[X_1 = k]$  pour tout entier  $k \in X_1(\Omega)$  et en donner les valeurs d'espérance  $\mathbb{E}(X_1)$  et de variance  $\mathbb{V}(X_1)$ .
  - (b) Justifier que les variables aléatoires  $X_2$  et  $X_3$  suivent la même loi que  $X_1$ .
- 2. Justifier que  $X_1 + X_2 = n X_3$  et en déduire la variance de  $X_1 + X_2$ .
- 3. En déduire :

$$Cov(X_1, X_2) = -\frac{n}{9}.$$

Les variables aléatoires  $X_1$  et  $X_2$  sont-elles indépendantes?

4. Exprimer H en fonction des variables  $X_1$   $X_2$  et  $X_3$  puis montrer que : E(H) = 20n.

Ne remarqueriez-vous pas une certaine similarité avec l'exercice précédant?

Exercice 10 Une urne contient une boule blanche et une boule noire, les boules étant indiscernables au toucher.

On prélève une boule au hasard (équiprobable) et on relève sa couleur. On replace alors cette boule dans l'urne, ainsi qu'un autre boule de cette même couleur. Cette épreuve est répétée p fois, avec  $p \ge 3$  entier naturel donné.

On définit enfin, pour chaque  $i \leq p$  une variable aléatoire  $X_i$  de Bernoulli, associée au succès une boule blanche est

obtenue au  $i^{eme}$  tirage et on notera  $Z_p = \sum_{i=1}^p X_i$ .

- 1. Déterminer complètement la loi du couple  $(X_1; X_2)$  et en déduire la loi (marginale) de  $X_2$ .
- 2. En déduire la loi de probabilité de  $Z_2$ . On donnera  $Z_p(\Omega)$
- 3. On se donne  $2 \le p \le n-1$  un entier.
  - (a) Justifier que  $Z_p(\Omega) = [0; p]$ .
  - (b) Interpréter en contexte l'événement  $[Z_p=k]$  pour  $0 \le k \le p$  entier. On pourra représenter schématiquement l'urne après p étapes
  - (c) Démontrer que, pour k entier naturel vérifiant  $k \leq p$  la valeur de  $\mathbb{P}_{[Z_p=k]}[X_{p+1}=1]=\frac{k+1}{n+2}$
  - (d) Etablir que:

$$\mathbb{P}[X_{p+1} = 1] = \frac{1 + \mathbb{E}[Z_p]}{2 + p}$$

(Indication : on pourra utiliser la formule des probabilités totales)

- (e) Justifier que  $\mathbb{E}[Z_p] = \sum_{i=1}^p \mathbb{P}[X_i = 1]$
- 4. Démonter que  $\forall p \geq 3$  on a  $\mathbb{E}[Z_p] = \frac{p}{2}.$  On pourra raisonner par récurrence.
- 5. Etablir enfin que  $\forall p \geq 3$   $\mathbb{P}[X_p = 1] = \mathbb{P}[X_p = 0] = \frac{1}{2}$ . Ce résultat semble-t-il intuitif?

## Chapitre X

 $M^r$  Hemon

**Exercice** 11 Pour  $n \in \mathbb{N}^*$ , on se donne  $X_1, \dots, X_n$  des variables aléatoires (mutuellement) indépendantes suivant une même loi  $\mathcal{B}(p)$  avec  $p \in ]0; 1[$ .

- 1. Calculer, pour  $n \in \mathbb{N}^*$ , les valeurs de  $\mathbb{E}[X_i]$  et  $\mathbb{V}[X_i]$  où  $i \leq n$ .
- 2. On pose ensuite  $Y_0 = 0$  (variable certaine) puis on définit une suite  $(Y_n)_{n \in \mathbb{N}}$ , par récurrence :

$$\forall n \ge 1 \quad Y_n = \frac{1}{2}Y_{n-1} + X_n$$

(a) Etablir que, pour tout  $n \ge 1$  on a :

$$Y_n = \sum_{i=0}^{n-1} \frac{1}{2^i} X_{n-i}$$

- (b) Déterminer, en justifiant soigneusement, l'espérance et la variance de  $Y_n$ , pour  $n \ge 1$ .
- (c) Calculer enfin  $Cov(Y_n; Y_{n+1})$  pour  $n \in \mathbb{N}$ .
- (d) Peut-on trouver i et j sont deux entiers naturels non nuls, tels que  $Y_i$  et  $Y_j$  soient indépendantes?
- (e) **Python** : Proposer un script permettant de générer une réalisation de la variable aléatoire  $Y_n$  lorsque n est fourni en entrée.

Exercice 12 On considère une suite  $(X_n)_{n\in\mathbb{N}}$  de variables aléatoires définies sur un même espace de probabilités  $(\Omega; \mathcal{P}(\Omega); \mathbb{P})$ .

On suppose que chacune de ces variables admet une espérance et une variance et on note  $S_n = \sum_{k=1}^n X_k$ .

$$\text{Etablir que, pour tout } n \in \mathbb{N}^* \text{ on a}: \mathbb{V}[S_n] = \sum_{k=1}^n \mathbb{V}[X_k] \quad + \ 2 \sum_{1 \leq i < j \leq n} \mathrm{Cov}(X_i; X_j)$$

Indication: On pourra raisonner par récurrence.

**Exercice** 13 Soit n un entier tel que  $n \geq 3$ . On effectue n lancers indépendants d'une pièce pour laquelle la probabilité d'obtenir *face* est p ( $p \in ]0,1[$ ). On pose q=1-p.

Pour  $i \in [1, n]$ , on définit :

- La variable aléatoire  $Z_i$  qui vaut 1 si le (i-1)-ième lancer donne face et le i-ième lancer donne pile et 0 sinon.
- Les événements  $F_i$ : "le i-ème lancer donne face"
- Les événements  $P_i$ : "le i-ème lancer donne pile".
- 1. Déterminer, pour tout i de [2, n], la loi de  $Z_i$ .
- 2. Déterminer, pour tout i de [2, n], l'espérance et la variance de  $Z_i$ .
- 3. Soient i et j deux entiers tels que  $2 \le i < j \le n$ .
  - (a) Montrer, à l'aide de la formule de Huygens, l'égalité :

$$Cov(Z_i, Z_j) = \mathbb{P}([Z_i = 1] \cap [Z_j = 1]) - \mathbb{P}[Z_i = 1]\mathbb{P}[Z_j = 1].$$

- (b) En déduire  $cov(Z_i, Z_j)$  dans les cas j = i + 1 et j > i + 1.
- (c) Pourquoi le résultat obtenu dans le cas j > i + 1 n'est pas surprenant?
- 4. On définit la variable aléatoire Z, par  $Z = \sum_{k=2}^{n} Z_k$ .
  - (a) Que représente la variable aléatoire Z?
  - (b) Déterminer l'espérance de Z.
  - (c) Déterminer la variance de Z dans le cas n=2.
  - (d) A l'aide de l'exercice 12 déterminer la variance de Z dans le général.