Estimations

Exercice 1 Soit p un réel appartenant à l'intervalle]0,1[. Soient $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires définies sur un même espace probabilisé, indépendantes et qui suivent toutes la loi de Bernoulli de paramètre p.

On pose, pour tout
$$n$$
 de \mathbb{N}^* , $S_n = \sum_{i=1}^n X_i$.

Soit ε un réel strictement positif. Justifier que, pour tout n de \mathbb{N}^* , on a :

$$\mathbb{P}\left[\left|\frac{S_n}{n} - p\right| \ge \varepsilon\right] \le \frac{p(1-p)}{n\varepsilon^2}.$$

Exercice 2 On considère une suite de lancers indépendants d'une même pièce équilibrée. Pour tout n de \mathbb{N}^* , on note X_n la variable aléatoire égale à 1 si l'événement «on obtient pile» est réalisé au n-ième lancer et à 0 sinon.

Pour tout n de \mathbb{N}^* , on pose $\overline{X_n} = \frac{X_1 + X_2 + \ldots + X_n}{n}$.

- 1. Que représente la suite $(\overline{X_n})_{n\in\mathbb{N}^*}$?
- 2. Justifier que, pour tout réel strictement positif ε , on a :

$$\lim_{n \to +\infty} \mathbb{P}\left[\left| \overline{X_n} - \frac{1}{2} \right| < \varepsilon \right] = 1.$$

3. Le résultat précédent est-il conforme à l'intuition?

Exercice 3 Dans tout l'exercice, X est une variable aléatoire suivant la loi de Poisson de paramètre $\lambda > 0$.

- 1. Une première inégalité
 - (a) Montrer que l'on a $\mathbb{P}\left[|X \lambda| \ge \lambda\right] \le \frac{1}{\lambda}$.
 - (b) En déduire $\mathbb{P}[X \lambda \ge \lambda] \le \frac{1}{\lambda}$ puis $\mathbb{P}[X \ge 2\lambda] \le \frac{1}{\lambda}$.
- 2. Une seconde inégalité

Soit Z une variable aléatoire (discrète ou à densité), d'espérance nulle et de variance v strictement positive.

(a) Montrer que, pour tout couple (a, x) de $]0, +\infty[\times \mathbb{R}_+, \text{ on a}]$:

$$\mathbb{P}[Z \ge a] \le \mathbb{P}\left[(Z+x)^2 \ge (a+x)^2 \right].$$

- (b) Justifier l'égalité $\mathbb{E}\left[Z^2\right]=v$, puis, en appliquant l'inégalité de Markov à la variable aléatoire $(Z+x)^2$, montrer que, pour tout couple (a,x) de $]0,+\infty[\times\mathbb{R}_+,$ on a : $\mathbb{P}[Z\geq a]\leq \frac{v+x^2}{(a+x)^2}$.
- (c) Justifier que, pour tout réel \boldsymbol{a} strictement positif, on a :

$$\mathbb{P}[Z \geq a] \leq \frac{v+1}{(a+1)^2} \quad \text{et} \quad \mathbb{P}[Z \geq a] \leq \frac{v+a^2}{4a^2}.$$

- (d) Montrer que ensuite que, pour tout réel a strictement positif, on obtient, à l'aide de a. $\mathbb{P}[Z \geq a] \leq \frac{v}{v+a^2}$. Indication: étudier la fonction $x \mapsto \frac{v+x^2}{(a+x)^2} \sup]0, +\infty[$.
- (e) En déduire $\mathbb{P}[X \geq 2\lambda] \leq \frac{1}{\lambda + 1}$.

Indication : appliquer le résultat de la question précédente à la variable aléatoire centrée associée à X.

Chapitre XI

 M^r Hemon

Exercice 4 Soit $\chi = (X_1 ; \dots ; X_n)$ un n-échantillon de variables aléatoires indépendantes et identiquement distribuées associé à n lancés d'une pièce truquée dont la probabilité d'obtenir la face désirée est $p \in]0;1[$.

On note F_n la fréquence d'apparition de cette face au cours de ces n lancers (à réaliser).

- 1. Donner la loi des variables X_k $(k \le n)$ et en rappeler l'espérance et la variance.
- 2. Ecrire F_n en fonction de X_1, \ldots, X_n et en déduire une expression de $\mathbb{E}[F_n]$ en fonction de n et de p.
- 3. Démontrer que $\mathbb{V}[F_n] \leq \frac{1}{4n}$.
- 4. Déterminer, dans l'inégalité de Bienaymé-Tchebychev appliquée correctement à F_n , une valeur de n la plus petite possible permettant d'assurer que la fréquence d'apparition de la face attendue lors de n lancers de cette pièce soit p au centième près survienne dans 95% des réalisations de série n lancers effectués.
- 5. Reprendre la démarche précédente mais avec 99% des cas.

Exercice 5 On considère un n-échantillon $(X_1; \ldots; X_n)$ d'une loi uniforme continue sur [0; a] et on pose $S_n = \max(X_k)_{k \le n}$. On cherche à estimer le paramètre a.

- 1. Démontrer que S_n est bien un estimateur de b et que son biais b_a est $\frac{-b}{n+1}$.
- 2. Est-il asymptotiquement sans biais, *i.e.*, a-t-on $\lim_{n\to+\infty}\mathbb{E}_a[S_n-a]=0$?
- 3. On définit le risque quadratique r_a de l'estimateur S_n par (sous couvert d'existence) :

$$r_a(S_n) = \mathbb{V}[S_n] + b_a^2$$

Etablir que S_n admet bien un risque quadratique et qu'il vaut $\frac{2a^2}{(n+1)(n+2)}$

4. Déterminer $\lim_{n\to+\infty} r_a(S_n)$.

Exercice 6 Soit X une variable aléatoire qui suit la loi de Bernoulli de paramètre p ($p \in]0,1[$). Soient n un entier strictement positif et (X_1,\ldots,X_n) un n-échantillon de X. On définit la variable aléatoire $\overline{X_n}$ par $\overline{X_n}=\frac{1}{n}\sum_{i=1}^n X_i$.

- 1. Justifier que $\overline{X_n}$ admet une espérance et une variance et les déterminer.
- 2. Montrer que, pour tout réel strictement positif ε , on a :

$$\mathbb{P}\left(\left|\overline{X_n} - p\right| \le \varepsilon\right) \ge 1 - \frac{p(1-p)}{n\varepsilon^2}$$

3. En déduire :

$$\mathbb{P}\left[\left|\overline{X_n} - p\right| \le \frac{\sqrt{p(1-p)}}{\sqrt{n \times 0,05}}\right] \ge 0,95$$

$$\operatorname{puis} \mathbb{P}\left[\overline{X_n} - \frac{\sqrt{p(1-p)}}{\sqrt{n \times 0,05}} \le p \le \overline{X_n} + \frac{\sqrt{p(1-p)}}{\sqrt{n \times 0,05}}\right] \ge 0,95.$$

- 4. En étudiant la fonction $x \mapsto x(1-x)$, justifier que, pour tout p de]0,1[, on a : $p(1-p) \le \frac{1}{4}$.
- 5. En déduire :

$$\mathbb{P}\left[\overline{X_n} - \frac{1}{2\sqrt{n \times 0,05}} \le p \le \overline{X_n} + \frac{1}{2\sqrt{n \times 0,05}}\right] \ge 0,95.$$

- 6. Que peut-on dire de l'intervalle $\left[\overline{X_n} \frac{1}{2\sqrt{n \times 0,05}}, \overline{X_n} + \frac{1}{2\sqrt{n \times 0,05}}\right]$ vis-à-vis de p?
- 7. Application:

- (a) 1 000 électeurs choisis au hasard ont été intérrogés avant une élection. 520 déclarent être favorables au candidat A. Déterminer une estimation de l'intervalle de confiance à 95% de la proportion p d'électeurs favorables au candidat A dans la population.
- (b) N électeurs choisis au hasard ont été intérrogés avant une élection. On suppose que la proportion de candidats favorables au candidat A obtenue est 0,52 et que l'intervalle de confiance à 95% de la proportion p d'électeurs favorables au candidat A dans la population (déterminé avec la même méthode que dans la question précédente) ne contient aucune valeur inférieure ou égale à 0,5.

Quelle est la valeur minimale de N?

Exercice 7 D'après ESCP 2022

On considère n variables aléatoires X_1, \ldots, X_n indépendantes et de même loi.

On suppose que cette loi permet d'écrire $\mathbb{E}[X_i] = a$ et $\mathbb{E}[X_i^2] = \frac{7}{6}a^2$ pour $i \leq n$ où a est un paramètre à estimer dans [0;1].

On pose
$$\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$$

- 1. Démontrer que les X_i ont bien une variance et la donner.
- 2. Déterminer l'espérance et la variance de la variable aléatoire \overline{X}_n .
- 3. En déduire que \overline{X}_n est un estimateur sans biais de a.
- 4. Quel est le risque quadratique de \overline{X}_n ?

 On donne le risque quadratique $r_a(T)$ d'un estimateur $T: r_a(T) = \mathbb{V}_a[T] + b_a(T)^2$
- 5. Soit $\varepsilon > 0$ fixé.
 - (a) Ecrire l'inégalité de Bienaymé-Tchebychev pour \overline{X}_n puis établir l'inégalité :

$$\mathbb{P}\left[\left|\overline{X}_n - a\right| \ge \varepsilon\right] \le \frac{1}{6n\varepsilon^2}$$

(b) En déduire l'inégalité :

$$\mathbb{P}\left[\overline{X}_n - \varepsilon \leq a \leq \overline{X}_n + \varepsilon\right] \geq 1 - \frac{1}{6n\varepsilon^2}$$

- (c) On a réalisé 1000 simulations $X_1, X_2, \ldots, X_{1000}$ de cette loi par un programme informatique. En prenant $\varepsilon = \frac{1}{\sqrt{600}}$, donner l'intervalle de confiance pour a correspondant à cette situation (en fonction de \overline{X}_{1000})
- (d) Quel est le niveau de confiance de ce dernier intervalle?

Exercice 8 Un problème d'estimations à densité

Soit $\theta > 0$ réel. On considère la fonction f définie par :

$$f(t) = e^{\theta - t} \mathbb{1}_{[\theta; +\infty[}(t)$$

- 1. Etude sommaire de f
 - (a) Vérifier que f ainsi définie est bien une densité de probabilité.
 - (b) Décrire la fonction de répartition F associée à f.
 - (c) Déterminer l'espérance et la variance associées à la loi caractérisée par F.

Soient alors T une variable aléatoire de densité f ainsi que n un entier supérieur ou égal à 2 et (T_1, \ldots, T_n) un n-échantillon de T.

- 2. On définit à présent une variable aléatoire par $Y_n = \frac{1}{n} \sum_{k=1}^n T_k$
 - (a) Vérifier que Y_n admet une espérance et une variance et les déterminer.
 - (b) Etablir alors que $\hat{Y}_n = Y_n 1$ est un estimateur sans biais de θ
 - (c) Quel est le risque quadratique de \hat{Y}_n ?