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Lois à densité particulières
Exercice 21 Transformation de lois (1) Soit U une variable aléatoire de loi uniforme (continue) sur [0; 1[.

On pose Z = − ln(1− U) et on note FU la fonction de répartition de U ainsi que FZ la fonction de répartition de Z.

1. Le cours donne directement :

∀x ∈ R FU (x) =

 0 si x < 0
x si 0 ≤ x < 1
1 si x ≥ 1

2. Soit t ∈ R donné. On a : t ≥ 0 ⇐⇒ −t ≤ 0 ⇐⇒ e−t ≤ 1.
Or, la fonction exp est strictement positive et strictement croissante sur R, ce qui permet d’écrire :

t ≥ 0 ⇐⇒ 0 < e−t ≤ 1 ⇐⇒ 0 > −e−t ≥ −1 ⇐⇒ 1 > 1− e−t ≥ 0 ⇐⇒ 1− e−t ∈ [0; 1[

3. Pour t ≥ 0 on calcule alors :

FZ(t) = P[Z ≤ t] = P[− ln(1− U) ≤ t] = P[ln(1− U) ≥ −t] = P
[
1− U ≥ e−t

]
= P

[
U ≤ 1− e−t

]
Mais, par la question précédente, on a t ≥ 0 ⇐⇒ 1 − e−t ∈ [0; 1[. Comme nous avons supposé t ≥ 0 nous
obtenons 1− e−t ∈ [0; 1[ ce qui permet d’écrire, d’après le rappel effectué en 1°, que :

FZ(t) = FU

(
1− e−t

)
= 1− e−t

Nous observons que si t < 0 alors e−t > 1 et ainsi 1− e−t < 0 d’où FU (t) = 0 dans un tel cas.
4. En résumé, nous avons démontré que :

∀t ∈ R FZ(t) =

{
0 si t < 0
1− e−t si 0 ≤ t

et nous reconnaissons ainsi la fonction de répartition d’une loi exponentielle dans le cas λ = 1. Donc Z suit une loi
exponentielle de paramètre 1.

5. On examine plus précisemment les instructions :

U=rd.random()
Z=-log(1-U)

En assimilant U à une Variable Aléatoire à densité de loi uniforme sur [0; 1[, l’étude qui précède permet de voir que
Z = − ln(1− U) suit une loi exponentielle de paramètre 1.

Exercice 23 Variance de la loi Exponentielle : démonstration
Ce problème permet de démontrer la formule de calcul donnant la variance (ainsi que le moment d’ordre 2) d’une VAR
suivant une loi exponentielle sans avoir recourt au théorème de transfert.

1. Les notations étant posées, on commence par observer que Z(Ω) = Y (Ω) = R+ comme Z suit une loi exponentielle
(pour Z) et par positivité sur R de z 7→ z2 (pour Y ).

(a) On calcule, pour t ≥ 0 :

FY (t) = P[Y ≤ t] = P[0 ≤ Z2 ≤ t] = P
[
0 ≤ Z ≤

√
t
]
= P

[
Z ≤

√
t
]
= FZ(t)

la fonction √ étant bien croissante sur R. Ainsi, comme Z suit une loi exponentielle de paramètre 1, on peut
identifier sa fonction de répartition FZ(x) = 1− e−x pour x ≥ 0 et le résultat s’en suit avec x =

√
t ≥ 0.
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(b) De façon générale, et par les remarques effectuées, on synthétise :

∀y ∈ R FY (y) =

{
1− e−

√
y si t ≥ 0

0 sinon

(c) Sur ]−∞; 0[, la fonction FY est constante nulle donc de classe C1 et donc aussi continue.
Sur ]0; +∞[, la fonction FY est composée d’une affine avec exp composée avec la fonction √ qui est de classe
C1 sur R∗

+ donc FY est bien de classe C1 sur R∗
+ et donc également continue.

On étudie la continuité spécifiquement en y = 0 :
• On calcule lim

x→0−
FY (x) = lim

x→0−
0 = 0 d’une part,

• On caculer lim
x→0+

FY (x) = lim
x→0+

1− e−
√
x = 1− e0 = 0 d’autre part.

Ainsi, ayant FY (0) = 0 = lim
x→0+

FY (x) = lim
x→0−

FY (x), la fonction FY est continue en y = 0.

En conclusion, FY est continue sur tout R et de classe C1 sur R sauf éventuellement en y = 0 donc FY est la
fonction de répartition d’une variable aléatoire à densité et ainsi, Y admet une densité de probabilité.

(d) FY est donc dérivable sauf éventuellement en y = 0 et ainsi, on calcule, pour t > 0 :

F ′
Y (t) = 0− (−

√
t)′e−

√
t =

1

2
√
t
e−

√
t

et, si t < 0, comme FY (t) = 0 on trouve F ′
Y (t) = 0. On pourrait considérer une densité de Y comme la fonction

F ′
Y sauf en t = 0 où l’on peut choisir une valeur (positive) arbitraire -comme 0 tout simplement. Ceci justifie

alors le choix de fY dans la suite de l’énoncé.

2. La fonction définie par g(t) = tfY (t) pour t ∈ R est bien définie même en t = 0 puisque fY (0) = 0 (on n’applique
pas l’expression de calcul proposée).

(a) Commençons par observer que, pour tout t > 0 on a g(t) = t× 1

2
√
t
e−

√
t =

√
t

2
e−

√
t. Ainsi :

On calcule donc, d’une part, lim
t→0+

g(t) = lim
t→0+

√
t

2
e−

√
t =

0

2
e0 = 0.

D’autre part, lim
t→0−

g(t) = lim
t→0−

t× 0 = 0 et g(0) = 0 comme évoqué.

En conclusion, g est continue en 0.
(b) g est continue sur R∗

− comme constante et g est continue sur R∗
+ comme produit d’un monôme et de f elle-même

continue sur R∗
+ comme dérivée de FY qui est de classe C1 sur R∗

+.
Comme nous venons de prouver que g est continue en 0, il vient que g est bien continue sur R.

3. Les fonctions φ : x 7→
∫ x

0

g(t) dt et ψ : x 7→
∫ x

0

t2e−t dt sont de classe C1 sur R+ par le théorème fondamental de

l’intégration ayant g continue par ce qui précède et t 7→ t2e−t continue par produit de exp et d’un monôme.
On pourra retenir que φ′ = g et ψ′ : x 7→ x2e−x par ce même théorème.

(a) On procède à une IPP en posant : {
u(t) = t2 =⇒ u′(t) = 2t
v′(t) = e−t avec v(t) = e−t

qui sont bien de classe C1 sur R comme monôme et exponentielle respectivement, permettant de procéder au
calcul pour x ≥ 0 :

ψ(x) =
[
−t2e−t

]x
0
−

∫ x

0

(−2t)e−t dt = −x2e−x + 2

∫ x

0

te−t dt

par linéarité de l’intégrale.
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(b) Comme Z suit une loi E(1), Z admet une espérance et E[Z] = 1 par propriété. En particulier, si fZ désigne une
densité de Z alors :

1 = E[Z] =
∫ +∞

−∞
tfZ(t) dt =

∫ +∞

0

tfZ(t) dt

comme fZ est nulle sur R∗
− et, comme ∀t ≥ 0 fZ(t) = e−t on trouve finalement :

1 =

∫ +∞

0

tfZ(t) dt =
∫ +∞

0

te−t dt =⇒ 2

∫ +∞

0

tfZ(t) dt = 2

∫ +∞

0

te−t dt

Par théorème des croissances comparées, on a lim
x→+∞

x2e−x = 0 et donc, finalement :

lim
x→+∞

ψ(x) = lim
x→+∞

−x2e−x + 2

∫ x

0

tfZ(t) dt = 0 + 2 = 2

(c) H est la composée de φ avec un monôme donc H est de classe C1 sur R+. On peut donc calculer, on rappelant
que g est continue en 0 :

∀x ≥ 0 H ′(x) = 2xφ′(x2) = 2xg(x2) = 2x

√
x2

2
e−

√
x2

= x2e−x

rappelant que
√
x2 = |x| = x si x ≥ 0.

Nous confrontons ce résultat à la dérivée de ψ qui a été donnée initialement : ψ′ : x 7→ x2e−x.
(d) Par ce qui précède, φ et ψ ont même dérivée sur R+ et ainsi H − φ a une dérivée nulle (par différence) d’où

H − φ est constante sur R+ par théorème.
Il vient ∀x ∈ R+ H(x) − φ(x) = H(0) − φ(0) = 0 − 0 = 0 d’après l’observation proposée. Ce qui permet
de conclure que φ et H coïncident sur R+.

4. La fonction g est nulle sur R− donc
∫ 0

−∞
g(t) dt converge et vaut 0.

5. Par la relation de Chasles, nous avons obtenu la convergence de
∫ 0

−∞
g(t) dt et de

∫ +∞

0

g(t) dt, ce qui permet

d’assurer la convergence de
∫ +∞

−∞
g(t) dt et de déterminer sa valeur :

∫ +∞

−∞
g(t) dt =

∫ 0

−∞
g(t) dt +

∫ 0

−∞
g(t) dt = 0 + 2 = 2

6. Nous venons d’obtenir que E[Y ] = 2 en calculant
∫ +∞

−∞
tfY (t) dt. Nous avons donc que Z possède un moment

d’ordre 2 et que E[Z] = 2 puisque Y = Z2. Par la formule de Koenig-Huygens :

V[Z] = E[Z2]− E[Z]2 = 2− (1)2 = 1

7. En posant X =
1

λ
Z avec λ > 0 l’exercice Transformation de lois (2) permet d’assurer que X suit une loi exponen-

tielle de paramètre λ > 0 et ainsi, par propriété de la variance :

V[X] = V
[
1

λ
Z

]
=

1

λ
V[Z] =

1

λ
× 1 =

1

λ

Feuille de TD n°9 : corrigés 3


