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Lois a densité particulieres

Exercice Transformation de lois (1) Soit U une variable aléatoire de loi uniforme (continue) sur [0; 1].

On pose Z = —In(1 — U) et on note Fy; la fonction de répartition de U ainsi que Fz la fonction de répartition de Z.
1. Le cours donne directement :
0 six<0
VeeR Fy(z)=¢ 2z si0<z<l1
1 siz>1

2. Soitt € Rdonné. Ona:t>0 <= —t<0 <= e !<1
Or, la fonction exp est strictement positive et strictement croissante sur R, ce qui permet d’écrire :

t>0 <= 0<e <l <= 0>-€e'>-1 <= 1>1-e'>0 <= 1-e'e[0;1]
3. Pourt > 0 on calcule alors :
Fz(t) =P[Z <t]=P[-In(1-U) <] =Pln(1-U)>—-t]=P[1-U2>e | =P[U<1—-¢"]

Mais, par la question précédente, onat > 0 <= 1 — e~ € [0;1]. Comme nous avons supposé ¢ > 0 nous
obtenons 1 — e~* € [0; 1] ce qui permet d’écrire, d’apres le rappel effectué en 1°, que :

Fzt)=Fy(1—e")=1-¢"

Nous observons que si ¢ < 0 alors e™* > 1 etainsi 1 — e~ < 0 d’ott Fiy(t) = 0 dans un tel cas.
4. En résumé, nous avons démontré que :

0 sit<O0

vEEeR FZ(t){ l—et si0<t

et nous reconnaissons ainsi la fonction de répartition d’une loi exponentielle dans le cas A = 1. Donc Z suit une loi
exponentielle de parametre 1.

5. On examine plus précisemment les instructions :

U=rd.random¢()
Zz=-1log (1-0U)

En assimilant U & une Variable Aléatoire a densité de loi uniforme sur [0; 1], I’étude qui préceéde permet de voir que
Z = —In(1 — U) suit une loi exponentielle de parametre 1.

Exercice Variance de la loi Exponentielle : démonstration
Ce probleme permet de démontrer la formule de calcul donnant la variance (ainsi que le moment d’ordre 2) d’'une VAR
suivant une loi exponentielle sans avoir recourt au théoréme de transfert.

1. Les notations étant posées, on commence par observer que Z () = Y (2) = Ry comme Z suit une loi exponentielle
(pour Z) et par positivité sur R de z — 22 (pour Y).

(a) On calcule, pourt > 0:
Fy(t):]P’[Ygt]:P[OgZzgt}:P[Ongx/i] :P[Zg\/ﬂ = Fz(t)

la fonction , /— étant bien croissante sur R. Ainsi, comme Z suit une loi exponentielle de parametre 1, on peut
identifier sa fonction de répartition Fiz(z) = 1 — e~ pour 2 > 0 et le résultat s’en suit avec = = /¢ > 0.
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(b) De facon générale, et par les remarques effectuées, on synthétise :

l—e V¥ sit>0

WER Fy(y) = { 0 sinon

(¢) Sur] — 00;0], la fonction Fy est constante nulle donc de classe C* et donc aussi continue.
Sur |0; 40|, la fonction Fy est composée d’une affine avec exp composée avec la fonction , /— qui est de classe
C* sur R% donc Fy est bien de classe C! sur R’ et donc également continue.
On étudie la continuité spécifiquementen y = 0 :
e Oncalcule lim Fy(x) = lim 0= 0 d’une part,
z—0~ z—0—

e On caculer lim+ Fy(z) = lim 1—e V® =1—¢° = 0 d’autre part.
z—0

z—0t
Ainsi, ayant Fy (0) =0 = lim+ Fy(x) = lim Fy(x), lafonction Fy est continue en y = 0.
z—0 z—0~

En conclusion, Fy est continue sur tout R et de classe C! sur R sauf éventuellement en y = 0 donc Fy est la
fonction de répartition d’une variable aléatoire a densité et ainsi, Y admet une densité de probabilité.

(d) Fy est donc dérivable sauf éventuellement en y = 0 et ainsi, on calcule, pour £ > 0 :

) — 0 — () e VE— L Vi
Fy(t) = 0— (=) WG

et, sit < 0, comme Fy (t) = 0 on trouve FY, (t) = 0. On pourrait considérer une densité de Y comme la fonction
F{, sauf en t = 0 ol I’on peut choisir une valeur (positive) arbitraire -comme 0 tout simplement. Ceci justifie
alors le choix de fy dans la suite de 1’énoncé.
2. La fonction définie par g(t) = tfy (t) pour t € R est bien définie méme en ¢t = 0 puisque fy (0) = 0 (on n’applique
pas I’expression de calcul proposée).

1 t
(a) Commengons par observer que, pour tout ¢t > 0 on a g(t) = ¢ X — e Vi ie_‘/g. Ainsi :

2V/t 2

On calcule donc, d’ t, li t) = lim —e Vi=2¢0=0.
n calcule donc, d’une par tir(%g() 1H1r[r)1+ 26 26

D’autre part, lim g¢(¢) = lim ¢ x 0 = 0 et g(0) = 0 comme évoqué.
t—0— t—0—
En conclusion, g est continue en 0.

(b) g est continue sur R* comme constante et g est continue sur R’ comme produit d’un mondme et de f elle-méme
continue sur R’} comme dérivée de Fy qui est de classe C L sur R%.

Comme nous venons de prouver que g est continue en 0, il vient que g est bien continue sur R.

3. Les fonctions ¢ : x — / g(t)dtety : x— / t2e~! dt sont de classe C! sur R par le théoréme fondamental de
0 0

I’intégration ayant g continue par ce qui préceéde et ¢ — t?e~* continue par produit de exp et d’un monome.
On pourra retenir que ¢’ = g et 1)’ : & — x%e~* par ce méme théoréme.

(a) On procede a une IPP en posant :

{Z(t):tQ = u’g

) =2t
(t)=e"t avec o(t)=

€7t

t
qui sont bien de classe C' sur R comme mondme et exponentielle respectivement, permettant de procéder au
calcul pour z > 0 :

xz T
Y(x) = [—t2e_t]g - / (—2t)e ' dt = —2%e™® + 2/ te b dt
0 0

par linéarité de 1’intégrale.
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(b) Comme Z suit une loi £(1), Z admet une espérance et E[Z] = 1 par propriété. En particulier, si f désigne une

densité de Z alors :

| = B[Z] :/+ootfz(t) dt:/+ootfz(t) dat

— 00

comme f est nulle sur R* et, comme Vt > 0 fz(t) = et on trouve finalement :

—+oo —+o0 —+o0 +oo
1:/ th(t)dt:/ te~t dt :>2/ tfz(t)dt:2/ te~t dt

0 0 0 0

xT

Par théoréme des croissances comparées, on a lim z2e™® = 0 et donc, finalement :

T——+00

lim ¢(z) = lim —xQe_'”—i—Z/ tfz(t)dt =04+2=2
0

x——+00 T—+00

(c) H estla composée de ¢ avec un mondme donc H est de classe C! sur R, . On peut donc calculer, on rappelant
que g est continue en 0 :

V2
Vo >0 H'(z)=2z¢ (2?) = 2xg(2?) = 291:7966_‘/172 = %"

rappelant que V22 = |z| = zsiz > 0.

Nous confrontons ce résultat a la dérivée de v qui a été donnée initialement : v’ : x — z%e ",
(d) Par ce qui précede, ¢ et ¥ ont méme dérivée sur R et ainsi H — ¢ a une dérivée nulle (par différence) d’ou
H — ¢ est constante sur R par théoreme.
Ilvient Vo € Ry H(x) — ¢(z) = H(0) — ¢(0) = 0 — 0 = 0 d’apres 1’observation proposée. Ce qui permet
de conclure que ¢ et H coincident sur R .
0
4. Lafonction g est nulle sur R_ donc / g(t) dt converge et vaut 0.

—00

0

—+o0
5. Par la relation de Chasles, nous avons obtenu la convergence de / g(t) dt et de / g(t) dt, ce qui permet
0

+o0 -
d’assurer la convergence de / g(t) dt et de déterminer sa valeur :
+oo 0 0
/ g(t)dt:/ g(t)dt + / gt)dt=0+2=2

“+oo
6. Nous venons d’obtenir que E[Y] = 2 en calculant / tfy (t) dt. Nous avons donc que Z posséde un moment

oo

d’ordre 2 et que E[Z] = 2 puisque Y = Z2. Par la forl;lule de Koenig-Huygens :

V[Z] =E[Z?] -E[Z?=2—-(1)* =1

1
7. Enposant X = —Z avec A > 0 I’exercice Transformation de lois (2) permet d’assurer que X suit une loi exponen-

tielle de parametre A > 0 et ainsi, par propriété de la variance :
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