Interrogation $I_4(A)$

Exercice I : Cours [format Oral]

Les notions attendues sont Explicitement au programme officiel ECT-1 ou ECT-2 (et issues du BO)

- 1. Formule d'intégration par parties.
- 2. Formule du crible (ou de Poincaré) pour deux événements (en probabilités)

Exercice II : étude de fonction

Soit g la fonction définie sur I =]1/2; $+\infty[$ par $g(x) = \ln(2x-1) + \frac{1}{x+1}$.

- 1. Justifier que g est de classe C^2 sur I puis calculer g'(x)
- 2. Déterminer les limites de g en $+\infty$ et en $\frac{1}{2}$
- 3. Calculer $\int_{1}^{n} g(t) dt$ en fonction de $n \in \mathbb{N}^{*}$.

Exercice III: calculs matriciels

On considère la matrice $A = \begin{pmatrix} -2 & 4 \\ 1 & 2 \end{pmatrix}$.

- 1. Etablir que A est inversible puis donner la matrice A^{-1} inverse de A.
- 2. Calculer A^2 puis déterminer des réels a et b pour que $A^2 = aA + bI_2$

Interrogation $I_4(B)$

Exercice I : Cours [format Oral]

Les notions attendues sont Explicitement au programme officiel ECT-1 ou ECT-2 (et issues du BO)

- 1. Composition de fonctions : définition. Exemples de fonctions f et g vérifiant $f \circ g \neq g \circ f$.
- 2. Fonction logarithme népérien : propriétés algébriques

Exercice II : étude de fonction

Soit f la fonction définie sur \mathbb{R} par $f(x) = (x-1)e^{-2x} + 1$.

- 1. Justifier que f est de classe C^2 sur \mathbb{R} puis calculer f'(x)
- 2. Déterminer les limites de f en $-\infty$ et en $+\infty$
- 3. Calculer $\int_0^n f(t) dt$ en fonction de $n \in \mathbb{N}$.

Exercice III: calculs matriciels

On considère la matrice $B = \begin{pmatrix} 3 & -1 \\ 2 & -1 \end{pmatrix}$.

- 1. Etablir que B est inversible puis donner la matrice B^{-1} inverse de B.
- 2. Calculer B^2 puis déterminer des réels a et b pour que $B^2 = aB + bI_2$