Polynômes à coefficients réels

Exercice 1 Vocabulaire des polynômes

Parmi les fonctions suivantes, indiquez celles qui sont polynômiales en x puis, le cas échéant, en donner le degré :

1 a.
$$f(x) = \frac{3}{4}x^3 - x^2$$

b.
$$g(x) = \frac{x(x-2)}{7}$$

c.
$$h(x) = \frac{x^2 - x + 1}{2x^2 - x + 1}$$

$$\mathbf{1} \quad \mathbf{a}. \quad f(x) = \frac{3}{4}x^3 - x^2 \qquad \mathbf{b}. \quad g(x) = \frac{x(x-2)}{7} \qquad \mathbf{c}. \quad h(x) = \frac{x^2 - x + 1}{2x^2 - x + 1} \quad \mathbf{d}. \quad m(x) = x + 3x^2 - 5x^4 + 10x^5$$

1

2 a.
$$p(x) = x - \sqrt{x} + 1$$

2 a.
$$p(x) = x - \sqrt{x} + 1$$
 b. $q(x) = \frac{1}{7} - \frac{2}{x} + \frac{3}{x^2}$ **c.** $r(x) = \frac{6x^2 + 3}{x^2 + 0, 5}$ **d.** $s(x) = x\sqrt{3} - x^3\sqrt{2 - \sqrt{2}}$

$$\mathbf{c.} \quad r(x) = \frac{6x^2 + 3}{x^2 + 0.5}$$

d.
$$s(x) = x\sqrt{3} - x^3\sqrt{2 - \sqrt{2}}$$

- 1. (série 1) Résoudre f(x) = 0 ainsi que g(x) = 0.
- 2. (série 2) Résoudre q(x) = 0 ainsi que s(x) = 0.
- 3. (série 1) Justifier h ne s'annule pas sur son domaine de définition que l'on déterminera.
- 4. (série 2) On notera $t = \sqrt{x}$. Résoudre l'équation $t^2 t + 1 = 0$ et en déduire les solutions de p(x) = 0.

Exercice 2 Factoriser au mieux les polynômes $P(X) = X^3 - 5X^2 + 6X$ ainsi que $Q(X) = X^2 - 4X + 4$ et donner leurs

Exercice 3 Soit le polynôme $P = 3X^3 - 13X^2 + 2X + 8$

- 1. Vérifier que 1 est une racine de P
- 2. En déduire une forme factorisée de P
- 3. Donner l'ensemble de toutes les racines de P.

Exercice 4 On pose $P_0(X) = X + 1$ et, pour $n \in \mathbb{N}$, on a $P_{n+1}(X) = X^2 P_n(X) - 1$

- 1. Expliciter les polynômes P_1 , P_2 et P_3 .
- 2. Déterminer, en fonction de $n \in \mathbb{N}$, le degré de P_n .
- 3. Déterminer, en fonction de $n \in \mathbb{N}$, la valeur de la constante (associée au degré 0) du polynôme P_n .

Exercice 5 On pose $Q_0(X) = -2X$ et, pour $n \in \mathbb{N}$, on a $Q_{n+1}(X) = XQ_n(X) + X$

- 1. Expliciter les polynômes Q_1 , Q_2 et Q_3 .
- 2. Déterminer, en fonction de $n \in \mathbb{N}$, le degré de Q_n .
- 3. Déterminer, en fonction de $n \in \mathbb{N}$, la valeur de la constante (associée au degré 0) du polynôme Q_n .

Exercice | 6 | Résoudre, en fonction de $m \in \mathbb{R}$ fixé, l'équation d'inconnue $x \in \mathbb{R}$:

$$mx^2 = (m-1)x + 1$$

Exercice 7 Résoudre, en fonction de $m \in \mathbb{R}$ fixé, l'équation d'inconnue $x \in \mathbb{R}$:

$$mx^2 + 2mx = 9x - 6$$

Exercice $8 \cdot \Theta^{C\sharp}$ Soient P et Q deux polynômes admettant une même racine a commune. Démontrer qu'alors le polynôme P+Q admet encore a pour racine. Est-ce encore vrai pour le produit PQ des deux polynômes?

Feuille de TD n°6

M^r HEMON Algèbre et Logique (3) EC Exercice 9 Effectuer la division euclidienne de $P(X) = 2X^5 - 6X^4 + 12X^3 + 2X^2 - 5X + 1$ par X - 3.

Exercice 10 Effectuer la division euclidienne de $Q(X) = 3X^5 + 2X^4 - 10X^3 + 4X^2 + 2X - 3$ par X - 2.

Exercice 11 Effectuer la division euclidienne de $A(X) = X^5 + X - 1$ par X + 1.

Exercice | 12 | Effectuer la division euclidienne de $B(X) = X^5 - X + 2$ par X + 2.

Exercice 13 $\bullet \Theta^{C\sharp}$ En utilisant une division euclidienne, étudier les variations de $f(x) = \frac{15x - 7}{3x + 2}$ sur son domaine de définition.

Exercice 14 Déterminer un polynôme P tel que P(-1) = 0, P(2) = 1 et P(4) = -1 de degré le plus faible possible. Quels sont alors tous les polynômes satisfaisant cette condition?

Exercice 15 $\bullet \Theta^{C\sharp}$ Effectuer la division euclidienne de $P(X) = X^5 - 2X^4 + 4X^3 - 7X^2 + X - 10$ par le polynôme $Q(\overline{X}) = X^2 - 2X + 2.$

Indiquez les degrés respectifs du quotient et du reste obtenus.

Exercice 16 Effectuer la division euclidienne de $A(X) = X^6 - 5X^4 + 4X^3 + 2X - 5$ par le polynôme $Q(X) = X^2 + 3X$. Indiquez les degrés respectifs du quotient et du reste obtenus.

Exercice 17 $\bullet \Theta^{C\sharp}$ Déterminer les polynômes de degré 2 vérifiant la relation : P(X) = P(2-X)

Exercice 18 Pour chacune des équations suivantes, proposez un changement de variables X = u(x) afin de résoudre la-dite équation:

1 a.
$$2x^4 - 5x^2 - 6 = 0$$
 b. $\frac{2}{x^2} - \frac{4}{x} + 3 = 0$ **c.** $3\sqrt{x} - 2x = 1$ **d.** $\sqrt{x-1} + \frac{3}{\sqrt{x-1}} = 10$

2 a.
$$16 = x^2 + 4x^4$$
 b. $\frac{1}{5} = \frac{1}{x} - \frac{3}{x^2}$ **c**. $5x = 2 + 3\sqrt{x}$ **d**. $\frac{5}{\sqrt{2-x}} = 1 + \sqrt{2-x}$

Exercice 19 Soit f la fonction définie sur $I =]1; +\infty[$ par :

$$f(t) = \frac{t^3 - 5t^2 + 6t - 4}{t - 1}$$

- 1. Effectuer la division euclidienne de $X^3 5X^2 + 6X 4$ par X 1.
- 2. Dresser le tableau de variations de la fonction $\varphi: x \mapsto x^2 4x + 2 \operatorname{sur} \mathbb{R}$.
- 3. En déduire les variations de f sur I. La fonction f est-elle majorée ? minorée ?

Exercice 20 $\bullet \Theta^{C\sharp}$ Soit m fonction monôme de degré $n \in \mathbb{N}$.

- 1. Quelle est la parité de m selon les valeurs de n?
- 2. Que dire de la parité de la fonction polynômiale $p(x) = 14x^{12} 7x^8 + 13x^6 + \frac{1}{19}x^4 11$ définie sur \mathbb{R} ?
- 3. Que dire de la parité de la fonction polynômiale $i(x) = 7x^{13} + 68x^7 \frac{2}{9}x^5 + 2x$ définie sur \mathbb{R} ?
- 4. Etablir que la fonction $x \mapsto x^7 + x^4$ n'est ni paire ni impaire.
- 5. Enoncer une règle générale permettant de connaître la parité d'une fonction polynômiale.