

• Chapitres pouvant faire l'objet d'exercices

- Séries numériques
- Matrices inversibles (début du chapitre)

• Question de cours/exercices à préparer

Les exercices doivent être préparés avant la colle.

(Q1) On étudie la série $\sum_{n \ge n_0} \frac{3^{n+m_1}}{(-5)^{n+m_2}}$ où $n_0 \in \{1,2\}, m_1 \in \{-1,1\}$ et $m_2 \in \{-2,2\}$ sont choisis par le

Démontrer que la série est convergente et déterminer $\sum_{n=0}^{+\infty} \frac{3^{n+m_1}}{(-5)^{n+m_2}}$

- (Q2) On étudie la série $\sum_{n \ge 0} \frac{n}{4^{n+m_1} n!}$ où $m_1 \in \{-1, 1\}$ est choisi par le colleur.
 - 1. Soit $n \in \mathbb{N}$. Rappeler l'expression de S_n , somme partielle d'indice n de la série.
 - 2. Démontrer que la série est convergente et déterminer $\sum_{n=0}^{+\infty} \frac{n}{4^{n+m_1}n!}$.
- (Q3) On étudie la série $\sum_{n>0} \frac{1}{(n+1)(n+2)(n+3)}.$
 - 1. Soit $n \in \mathbb{N}$. Rappeler l'expression de S_n , somme partielle d'indice n de la série.
 - 2. Déterminer trois réels $a,\ b$ et c pour les quels on a :

$$\forall k \in \mathbb{N}, \frac{1}{(k+1)(k+2)(k+3)} = \frac{a}{k+1} + \frac{b}{k+2} + \frac{c}{k+3}.$$

Indication. Utiliser la méthode d'identification puis utiliser la méthode du pivot de Gauss pour résoudre le système linéaire ainsi obtenu.

- 3. En déduire une expression simple de S_n pour tout $n \in \mathbb{N}$.
- 4. En déduire la convergence de la série $\sum_{n \ge 0} \frac{1}{(n+1)(n+2)(n+3)}$ et calculer $\sum_{n=0}^{+\infty} \frac{1}{(n+1)(n+2)(n+3)}$
- (Q4) On étudie la série harmonique $\sum_{n=1}^{\infty} \frac{1}{n}$.
 - 1. Soit $n \in \mathbb{N}^*$. Rappeler l'expression de H_n , somme partielle d'indice n de la série harmonique.
 - 2. Montrer que pour tout entier n non nul, $H_{2n} H_n \geqslant \frac{1}{2}$.
 - 3. A l'aide d'un raisonnement par l'absurde, montrer que la série harmonique est divergente.

(Q5) Soient
$$A = \begin{pmatrix} 1 & -2 & 5 \\ -1 & 2 & -1 \\ 2 & -4 & 1 \end{pmatrix}$$
 et $X = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$.

- 1. (a) Calculer AX.
 - (b) A l'aide d'une démonstration par l'absurde, en déduire que A n'est pas inversible.
- 2. Retrouver ce résultat à l'aide de la méthode du pivot de Gauss.

(Q6) Soit
$$A = \begin{pmatrix} 3 & 9 & -9 \\ 2 & 0 & 0 \\ 3 & 3 & -3 \end{pmatrix}$$
.

- 1. (a) Calculer A^2 et A^3 .
 - (b) A l'aide d'une démonstration par l'absurde, en déduire que A n'est pas inversible.
- 2. On considère le système linéaire $\begin{cases} 3x + 9y 9z &= -9 \\ 2x &= 6 \\ 3x + 3y 3z &= 3 \end{cases}$

Déterminer l'unique couple de réels (x, y) tel que le triplet (x, y, 1) soit solution de ce système linéaire.

(Q7) Soit
$$A = \begin{pmatrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \end{pmatrix}$$
.

- 1. Montrer que $A^2 7A 8I_3 = 0_{3,3}$, en déduire que A est inversible et donner son inverse, d'abord en fonction de A, puis sous forme d'un tableau de réels.
- 2. On considère le système linéaire $\begin{cases} 2x+3y+3z &= 7\\ 3x+2y+3z &= 4\\ 3x+3y+2z &= 5 \end{cases}$
 - (a) Écrire le système linéaire sous forme matricielle.
 - (b) Résoudre le système à l'aide de la question 1.