Lycée Turgot Ens-1D2 2022 / 2023

Relations Binaires

Exercice 1 Pour chaque relation binaire définie sur E donnée, indiquez (en justifiant) celles qui sont d'équivalences :

- 1. Sur $E = \mathbb{R}$, on écrit $x \circ y$ lorsque xy = 0
- 2. Sur $E = \mathbb{Z}$, on écrit n = 3 k lorsque l'entier n k est divisble par 3
- 3. Sur $E = \mathcal{P}(A)$ avec A un ensemble quelconque non vide, on écrit $a \sim b$ lorsque les parties sont en bijection.
- 4. Sur $E = \mathbb{R}^{\mathbb{R}}$, on écrit $f \doteq g$ lorsque les fonctions f et g vérifient $\exists x \in \mathbb{R} \ f(x) = g(x)$
- 5. Sur $E = \mathbb{R}^{\mathbb{R}}$, en se donnant une partie $A \subset \mathbb{R}$ non vide de \mathbb{R} , on écrit $f \equiv_A g$ lorsque les fonctions f et g vérifient $\forall x \in A \ f(x) = g(x)$

Exercice 2 Pour chaque relation binaire donnée, indiquez, en justifiant, celles qui sont des ordres (larges). Le cas échéant, précisez si l'odre est total ou partiel.

- 1. Sur $E = \mathbb{R}^I$, on écrit $f \leq_I g$ lorsque $\forall x \in I \quad f(x) \leq g(x)$
- 2. Sur Λ^* , ensemble des mots de la langue française, on écrit $\omega \prec \zeta$ lorsque le mot ω apparaît dans l'écriture du mot ζ . Exemple: si x =chat et y =chaton, on observe que chat on et donc $x \prec y$
- 3. Sur $E = \mathbb{R}[X]$, ensemble des polynômes à coefficients réels, on écrit $P \downarrow Q$ lorsque $deg(P) \leq deg(Q)$.
- 4. Sur $E = \mathbb{R}^2$, on définit $(x; y) \prec (z; t)$ lorsque $x < z \lor (x = z \land y \le t)$
- 5. Sur \mathcal{P} , la population humaine actuelle, on écrit $h\mathcal{R}y$ lorsque y est un descendant (biologique) de hOn pourra discuter selon qu'on considère pouvoir être un descendant de soi-même ou pas...

Exercice 3 Des relations connues

- 1. Pour chacune des relations binaires fournies, indiquer les propriétés valables parmi réfléxivité, symétrie, antisymétrie, transitivité.
 - (a) Les événements d'une même tribu A sont *indépendants*
 - (b) Les événements d'une même tribu A sont *incompatibles*
 - (c) Les événements d'une même tribu A sont équiprobables (i.e. A et B vérifient $\mathbb{P}[A] = \mathbb{P}[B]$.
 - (d) Les matrices A et B dites semblables d'ordre $n \in \mathbb{N}^*$, vérifiant $\exists P \in GL_n(\mathbb{R})$ $A = PBP^{-1}$
 - (e) Les vecteurs u et v de \mathbb{R}^n avec $n \in \mathbb{N}^*$ vérifiant $\forall i \leq n \ u_i \leq v_i$
- 2. Indiquer ainsi les relations d'équivalences, d'ordre parmi les relations présentées.
- 3. Les ordres éventuellement présentés sont-ils partiels ou totaux?

Exercice 4 RàR: paradigmes des relations binaires

On considère une relation binaire \mathcal{R} définie sur un ensemble E.

1. (Paradigme ensembliste) On désigne par R le sous-ensemble de E^2 défini par :

$$R = \{(x; y) \in E^2 \mid x\mathcal{R}y\}$$

et on appelle cet ensemble paradigme ensembliste de \mathcal{R} .

- (a) On prend pour \mathcal{R} la relation $\leq_{\mathbb{R}}$ d'ordre usuel sur \mathbb{R} . Représenter dans le plan usuel, assimilé à \mathbb{R}^2 , le paradigme ensembliste de $\leq_{\mathbb{R}}$
- (b) Même question avec la relation binaire définie par $x\mathcal{R}y \Leftrightarrow x^2 4x + 5 \le 2 + 5y y^2$

- 2. (Paradigme par graphe) On définit un graphe $\mathcal{G}_{\mathcal{R}}$ dont les sommets portent comme étiquettes les noms des objets de E. On relie deux sommets s et t par une arête [st] si, et seulement si, sRt est vérifié.
 - Le graphe ainsi défini est un autre paradigme de \mathcal{R} . (a) On note $\mathbb{B} = \{0, 1\}$ et on pose $E = \mathbb{B}^h$ avec $h \ge 2$ un entier naturel.

On définit ensuite une relation binaire C_h sur E par :

$$(b_1 \dots b_h) \mathcal{C}(b'_1 \dots b'_h) \Leftrightarrow \exists ! i \leq h \ b_i \neq b' i$$

Représenter le graphe associé à cette relation dans les cas h=2 et h=3

- (b) La représentation sous forme de graphe de C_h est nommée h-cube. Comment l'interprétez-vous?
- (c) On se donne cette fois-ci $E = \mathcal{P}([1;3])$ muni de la relation binaire (d'ordre) \subset . Représenter le graphe associé.

Exercice 5 On nomme application croissante de E dans F toute application $f: E \longrightarrow F$ avec $(E; \leq)$ et $(F; \prec)$ deux enembles ordonnés vérifiant :

$$\forall x \in E \ \forall y \in E \ x \le y \implies f(x) \prec f(y)$$

- 1. Justifier que \mathbb{P} est une application croissante de $(\mathcal{A}; \subset)$ dans $([0;1];\leq)$, l'espace $(\Omega;\mathcal{A}; \mathbb{P})$ étant un espace probabilisé.
- 2. Proposez une définition d'application décroissante similaire.
- 3. Démontrer que la composée d'applications croissantes est croissante en précisant bien les hypothèses sur les domaines de chaque application.
- 4. Ecrire des résultats analogues avec la décroissance.

Exercice 6 RàR : équivalence en analyse Soit $a \in \overline{\mathbb{R}}$ fixé.

On définit la relation binaire \sim_a par $f \sim_a g$ pour f et g deux fonctions définies au voisinage épointé de a lorsque :

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

- 1. Démontrer que \sim_a définie une relation d'équivalence sur l'ensemble des fonctions définies au voisinage de a, ne s'annulant pas au voisinage de a (sauf peut-être éventuellement en a).
- 2. Que signifierait, pour f, que l'on a $f \sim_a O$?
- 3. Etude de quelques exemples
 - (a) Démontrer que $\ln(1+x) \sim_0 x$ et que $e^x \sim_0 1 + x + \frac{x^2}{2}$
 - (b) Vérifier que $x^3 2x^2 + 3x 5 \sim_{+\infty} x^3$
 - (c) Etablir que, pour tout polynôme P, on a $P(x) \sim_0 P(x) + x^n$ avec $n > \deg(P)$ entier naturel.
- 4. Proposer des équivalents (le plus simples possibles) en 0 de :

a)
$$e^x$$
 b) $\frac{1}{1+x}$ **c**) $1-\frac{1}{1+x}$ **d**) $\ln(1-x)$ **e**) $\ln(1+x^2)$ **f**) $e^x-1-\frac{x^2}{2}$ **g**) $\sqrt{1+x}-1$

5. Expliquer pourquoi, si f admet une limite finie $l \neq 0$ en a, il est préférable de retenir un équivalent (le plus simple possible) de f(x) - l au voisinage de a.

Exercice 7 Ordre vectoriel partiel mais naturel

On définit sur \mathbb{R}^n une relation binaire par :

$$\forall x \in \mathbb{R}^n \ \forall y \in \mathbb{R}^n \ x \prec y \ \Leftrightarrow \ \forall i < n \ x_i < y_i$$

- 1. Pour n=2, représenter dans le plan les vecteurs $x\in\mathbb{R}^2$ vérifiant $x\prec(2;3)$ puis ceux vérifiant $x\prec(-2;1)$
- 2. Pour n=2, représenter dans le plan les vecteurs $y\in\mathbb{R}^2$ vérifiant $(-2,-3) \prec y$ puis ceux vérifiant $(2,-1) \prec y$
- 3. Vérifier que \prec définit une relation d'ordre sur \mathbb{R}^n , avec $n \in \mathbb{N}^*$. Cette dernière est-elle totale ? (discuter selon n)
- 4. Etablir que si F est un sous-espace vectoriel de \mathbb{R}^n de dimension au moins 1, alors F ne possède ni majorant, ni minorant.

Cet ordre s'appelle ordre produit de \mathbb{R}^n

Exercice 8 Ordre vectoriel total mais moins naturel

On considère $E=\mathbb{R}^n$ pour $n\geq 2$ entier naturel. On souhaite définir sur E l'ordre dit lexicographique par récurrence sur n. On commence donc par étudier le cas n=2

1. On considère ici que n=2. Pour $X=(x_1;x_2)$ et $Y=(y_1;y_2)$, on écrira que $X\leq_2 Y$ lorsque :

$$x_1 < y_1 \lor (x_1 = y_1 \land x_2 \le y_2)$$

Les éléments x_1, x_2, y_1 et y_2 étant des réels, l'usage de \leq est celui entendu au sens usuel.

- (a) On donne u=(1;3). Représenter graphiquement l'ensemble des éléments $x\in\mathbb{R}^2$ vérifiant $x\leq_2 u$.
- (b) On donne v=(2;-1). Représenter graphiquement l'ensemble des éléments $x\in\mathbb{R}^2$ vérifiant $v\leq_2 x$.
- (c) Etablir que \leq_2 définit une relation d'ordre totale sur \mathbb{R}^2

2. prolongement facultatif

On suppose maintenant que l'ordre \leq_n a été défini sur \mathbb{R}^n avec $n \geq 2$. On définit \leq_{n+1} sur \mathbb{R}^{n+1} par :

$$X = (x_i)_{i \le n+1} \le_{n+1} Y = (y_i)_{i \le n+1} \iff ((x_i)_{i \le n} <_n (y_i)_{i \le n}) \lor (\forall i \le n \ x_i = y_i \land x_{n+1} \le y_{n+1})$$

- (a) Démontrer que, si \leq_n est un ordre total sur \mathbb{R}^n , alors \leq_{n+1} est un ordre total sur \mathbb{R}^{n+1}
- (b) En déduire que, pour tout $n \in \mathbb{N}^*$, la relation binaire \leq_n définit un ordre total sur \mathbb{R}^n
- 3. Et pour finir, pour les plus curieux : A partir de cette démarche, établir que les mots du dictionnaire sont bien rangées selon une relation binaire que l'on pourra expliciter.

Exercice 9 Equivalence fonctionnelle

Soit f une application d'un ensemble E dans un ensemble F donnée. On définit \equiv_f une relation binaire sur \mathbb{R} par :

$$x \equiv_f y \Leftrightarrow f(x) = f(y)$$

- 1. Démontrer que \equiv_f définit toujours une relation d'équivalence sur E.
- 2. Que représentent les classes d'équivalences pour \equiv_f ?
- 3. Etablir que la relation R définie sur les matrices carrées d'ordre $n \ge 2$ par : $A R B \Leftrightarrow \sum_{k=1}^n a_{kk} = \sum_{k=1}^n b_{kk}$ définit une relation d'équivalence.