Notions complémentaires

Lycée Turgot Ens-1D2 2022 / 2023

Trigonométrie

Exercice 1 Résoudre l'équation $\sqrt{\cos x} + \sqrt{\sin x} = 1$ d'inconnue réelle x.

Indication: On pourra étudier la fonction définie par $f(x) = \sqrt{\cos x} + \sqrt{\sin x}$

Exercice 2 Des limites avec fonctions trigonométriques

Déterminer les limites suivantes :

1.
$$\lim_{x \to +\infty} \cos \left(\frac{\pi x + 3}{2x + 1} \right)$$
 2. $\lim_{x \to +\infty} \sin \left(\frac{1}{\sqrt{x + 1}} \right)$ 3. $\lim_{x \to 0} \frac{\cos x - 1}{\sin^2 x}$ 4. $\lim_{x \to +\infty} \frac{1 + \sin x}{1 + x}$

2.
$$\lim_{x \to +\infty} \sin\left(\frac{1}{\sqrt{x+1}}\right)$$

$$3. \quad \lim_{x \to 0} \frac{\cos x - 1}{\sin^2 x}$$

4.
$$\lim_{x \to +\infty} \frac{1 + \sin x}{1 + x}$$

Exercice 3 Des intégrales avec fonctions trigonométriques

Calculer les intégrales suivantes :

$$1. \quad \int_{-\pi}^{\frac{\pi}{4}} \frac{\sin(2t)}{\cos t} dt$$

1.
$$\int_{-\frac{\pi}{3}}^{\frac{\pi}{4}} \frac{\sin(2t)}{\cos t} dt$$
 2. $\int_{0}^{\frac{\pi}{6}} \frac{3}{2} \cos^{2}(t) - \sin(2t - \pi) dt$ 3. $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + 2\sin x} dx$ 4. $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{\tan x} dx$

3.
$$\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + 2\sin x} \, dx$$

$$4. \quad \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{\tan x} dx$$

Exercice 4 Etude de réciproque

On considère la fonction φ définie sur $I = \left] -\frac{\pi}{2} \; ; \; \frac{\pi}{2} \right[\operatorname{par} \varphi(x) = \sin(x).$

- 1. Justifier que φ est bijective de I dans]-1;1[et de classe \mathcal{C}^2 sur I.
- 2. La fonction réciproque de φ définie sur]-1;1[est notée \arcsin . Dresser le tableau des variations de \arcsin .
- 3. A partir de la formule $(\varphi \circ \varphi^{-1})(x) = x$, déterminer une expression de $\arcsin'(x)$ pour $x \in]-1;1[$.

Exercice 5 Développements limités trigonométriques

Déterminer les développements limités à l'ordre n, en a (notés $DL_n(a)$) demandés :

1.
$$DL_3(0)$$
 de $\frac{\sin(x) - x\cos(x)}{1+x}$ puis de $\frac{x(2+\cos x) - 3\sin x}{x^5}$

2.
$$DL_3\left(\frac{\pi}{4}\right)$$
 de $\frac{\cos x - \frac{\sqrt{2}}{2}}{\pi - 4x}$

Exercice | 6 | Calculer les limites suivantes (on pourra s'aider de développements limités) :

(a)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\ln(1+x)} \right)$$

$$\lim_{t \to 0} \frac{1}{t} - \frac{1}{\sin t}$$

(c)
$$\lim_{x \to 1} \frac{\cos(\frac{\pi}{2}x)}{e^{-\frac{\pi}{2}x^2} - e^{-\frac{\pi}{2}}}$$

(d)
$$\lim_{x \to \frac{\pi}{2}} \frac{\sin(3x)}{1 - 2\cos x}$$

(e)
$$\lim_{x \to \frac{\pi}{4}} \left(x - \frac{\pi}{4} \right) \tan \left(x + \frac{\pi}{4} \right)$$

$$\begin{array}{lll} \text{(a)} & \lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\ln(1+x)}\right) & \text{(b)} & \lim_{t\to 0} \frac{1}{t} - \frac{1}{\sin t} & \text{(c)} & \lim_{x\to 1} \frac{\cos\left(\frac{\pi}{2}x\right)}{e^{-\frac{\pi}{2}x^2} - e^{-\frac{\pi}{2}}} \\ \text{(d)} & \lim_{x\to \frac{\pi}{3}} \frac{\sin(3x)}{1-2\cos x} & \text{(e)} & \lim_{x\to \frac{\pi}{4}} \left(x - \frac{\pi}{4}\right) \tan\left(x + \frac{\pi}{4}\right) & \text{(f)} & \lim_{x\to 0} \frac{x(2+\cos x) - 3\sin x}{x^5} \end{array}$$

Exercice 7 Avec les espaces vectoriels On désignera dans cet exercice $E = \mathcal{C}^{\infty}(\mathbb{R})$.

- 1. Démontrer que la famille (\sin ; \cos) est libre dans l'espace E
- 2. Etudier la liberté de la famille (sin ; \cos ; $id \cdot \sin$, $id \cdot \cos$) dans E.

Exercice 8 Avec des applications linéaires On désignera dans cet exercice $E = \mathcal{C}^{\infty}(\mathbb{R})$.

- 1. On pose $F = \text{vect}(\exp ; \sin ; \cos)$. Démontrer que $\dim(F) = 3$.
- 2. On définit $D: F \longrightarrow E$ par D(f) = f' pour $f \in F$. Etablir que D est un automorphisme de F.
- 3. Déterminer la matrice représentative de D dans la base (exp; \sin ; \cos). On pourra abusivement noter D cette matrice.
- 4. Exprimer D^n en fonction de $n \in \mathbb{N}$

 M^r HEMON

Exercice 9 Nous proposons d'étudier à cette fin la fonction $\varphi(x) = \sqrt{\cos x} + \sqrt{\sin x}$ avec $x \in [0; \frac{\pi}{2}]$, après avoir observé la périodicité de période 2π et en notant que sur l'intervalle $[0; 2\pi[$, l'équation proposée n'est définie que sur $[0; \frac{\pi}{2}]$ (d'après les tableaux de signes de \cos et \sin).

La fonction φ est dérivable sur $]0; \frac{\pi}{2}[$ (lorsqu'aucun radicande ne s'annule). On calcule alors :

$$\varphi'(x) = \frac{-\sin x}{2\sqrt{\cos x}} + \frac{\cos x}{2\sqrt{\sin x}} = \frac{1}{2\sqrt{\sin 2x}} \left[\cos^{3/2} x - \sin^{3/2} x \right]$$

L'étude du signe de $\varphi'(x)$ se ramène donc à celui de $\cos^{3/2}x-\sin^{3/2}x$. Or :

$$\cos^{3/2} x - \sin^{3/2} x > 0 \iff \cos^{3/2} x > \sin^{3/2} x \iff \cos x > \sin x > 0$$

pour $x \in \left]0; \frac{\pi}{2}\right[$. Ainsi, on obtient que $\forall x \in \left]0; \frac{\pi}{2}\left[\right.$ $\left. \varphi'(x) > 0 \right. \Leftrightarrow \left. \frac{\pi}{4} > x \right.$ permettant de dresser un tableau des variations de φ sur $\left[0; \frac{\pi}{2}\right]$:

x	0		$\frac{\pi}{4}$		$\frac{\pi}{2}$
$\varphi'(x)$		+	0	_	
φ	1	7	$2^{3/4}$	×	1

Exercice 1 Des limites avec fonctions trigonométriques

3. On écrit (au voisinage de 0) :

$$\forall h \neq 0 \quad \frac{\cos h - 1}{\sin^2 h} = \frac{\cos h - 1}{1 - \cos^2 h} = \frac{\cos h - 1}{(1 - \cos h)(1 + \cos h)} = \frac{-1}{1 + \cos h}$$

et comme $\lim_{x\to 0} 1 + \cos x = 1 + \cos 0 = 2$ par continuité de $\cos \sup \mathbb{R}$ on trouvera finalement :

$$x0\frac{\cos x - 1}{\sin^2 x} = \lim_{x \to 0} \frac{-1}{1 + \cos x} = -\frac{1}{2}$$

4. On encadre (au voisinage de $+\infty$): $-1 \le \sin x \le 1$ et ainsi :

$$\frac{0}{1+x} = 0 \le \frac{1+\sin x}{1+x} \le \frac{1+1}{1+x} = \frac{2}{1+x}$$

Or, $\lim_{x \to +\infty} \frac{2}{1+x} = 0$ donc le théorème des gendarmes permet de conclure que $\lim_{x \to +\infty} \frac{1+\sin x}{1+x} = 0$