Optimisation avec ou sans contraintes

Eléments de théorie générale

Exercice 1 RàR

1. Soit S une matrice symétrique d'ordre $n \in \mathbb{N}^*$ à coefficients réels. Démontrer que si l'on peut trouver r > 0 tel que $h \in \mathcal{B}(O_n; r) \Rightarrow {}^t hSh \geq 0$ alors on a :

$$\forall x \in \mathbb{R}^n \quad {}^t x S x > 0$$

- 2. Soit f une fonction définie, de classe C^2 sur un ouvert \mathcal{U} de \mathbb{R}^n , à valeurs réelles.
 - (a) Redonner le développement de Taylor à l'ordre 2 de f au voisinage de $x_0 \in \mathcal{U}$
 - (b) On suppose que f admet un minimum local en x_0 de \mathcal{U} .

 Justifier que $\forall h \in \mathbb{R}^{n-t} h \cdot \nabla^2(f)(x_0) \cdot h \geq 0$ et en déduire que la matrice hessienne de f en x_0 est symétrique, diagonalisable à valeurs propres positives.
 - (c) Etablir un résultat analogue lorsque f réalise un maximum local en $x_0 \in \mathcal{U}$.

Exercice 2 RàR On se donne une fonction f de classe C^2 sur un ouvert \mathcal{U} de \mathbb{R}^n avec $n \in \mathbb{N}^*$ ainsi qu'un point $x_0 \in \mathcal{U}$ supposé critique pour f.

Par souci de simplicité et de clarté, nous noterons abusivement ∇^2 la matricienne de f en x_0 .

- 1. On suppose ici que ∇^2 est définie positive, à valeurs propres strictement positives.
 - (a) Justifier que, pour un certain r > 0, on a que :

$$\forall h \in \mathcal{B}(O_n; r) \quad f(x_0 + h) - f(x_0) > 0$$

avec égalité seulement si $h = O_n$.

- (b) En déduire que f réalise un minimum local en x_0 .
- 2. Etablir un résultat analogue lorsque ∇^2 est définie négative, à valeurs propres strictement négatives.
- 3. Expliciter ces résultats dans le cas où n=2 et obtenir un critère portant sur r, s et t lorsque l'on écrit :

$$\nabla^2(f)(x_0) = \begin{pmatrix} r & s \\ s & t \end{pmatrix}$$

4. Application: On donne $f(x;y) = x^4 + y^4 - 4x^2 + 8xy - 4y^2$. Déterminer les points critiques de f puis optimiser (sans contrainte) la fonction f.

Optimisation sous contraintes - liaisons explicites

- **Exercice** 3 Optimiser f(x; y) = xy 2x + 1 sous la contrainte x y + 6 = 0.
- **Exercice** 4 On pose $f(x; y) = x^2 y^4 y^2 + 2xy$, définie sur \mathbb{R}^2 muni de la contrainte $x + y^2 = 0$. Optimiser f sous cette contrainte.
- **Exercice** 5 On pose $f(x; y; z) = ze^{x^2+y^2}$, définie sur \mathbb{R}^3 muni de la contrainte $1 = x^2 y z$. Optimiser f sous cette contrainte.

Optimisation sous contraintes -démarche guidée

Exercice 6 D'après EnsD2 - 2016

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par $f(x;y) = x^3 + y^3$. On souhaite déterminer les extrema de f sur le domaine D défini par :

$$D = \{(x; y) \in \mathbb{R}^2 \mid x^2 + y^2 - 1 = 0\}$$

- 1. Déterminer la nature topologique de D.
- 2. Posez le Lagrangien $L(x; y; \mu)$ du programme où μ désigne un pultiplicateur de Lagrange.
- 3. Posez la condition de qualification du problème.
- 4. Déterminez le gradient du Lagrangien.
- 5. Quels sont les points critiques associés à $\mu = \frac{3}{2}$? à $\mu = -\frac{3}{2}$
- 6. Déterminez les deux autres points critiques.
- 7. Déterminez la Hessienne bordée.
- 8. Montrez que le programme admet trois minima locaux, ainsi que trois maxima locaux.

Exercice 7 D'après EnsD2 - 2017

On s'intéresse à l'ensemble des $(x;y) \in \mathbb{R}^2$ tels que $x^6 + y^6 = 1$. On souhaite en déterminer le(s) point(s) le(s) plus proche(s) de l'origine au sens de la distance euclidienne de \mathbb{R}^2 .

Ce problème peut être modélisé comme la minimisation sous contrainte d'une fonction f définie de \mathbb{R}^2 dans \mathbb{R} .

- 1. Quelle est l'expression de f(x; y) en fonction de x et de y?
- 2. Posez le Lagrangien $L(x; y; \lambda)$ du programme, où $\lambda \in \mathbb{R}$ est un multiplicateur de Lagrange.
- 3. Déterminez le gradient du Lagrangien.
- 4. Montrez qu'il existe deux valeurs du multiplicateur vérifiant les conditions du premier ordre. On les notera λ_1 et λ_2 avec $\lambda_1 < \lambda_2$.
- 5. Déterminez les points critiques associés au multiplicateur λ_1 , puis au multiplicateur λ_2 .
- 6. Montrer que f prend une même valeur V_1 aux points critiques associés à λ_1 .
- 7. Montrer que f prend une même valeur V_2 aux points critiques associés à λ_2 .
- 8. En déduire le ou les minima recherchés, s'il existent.

Optimisation sous contraintes -contraintes plus générales

Exercice 8 Dans chaque cas, résoudre le problème d'optimisation proposé :

- 1. Optimiser f définie par $f(x;y) = xe^y + ye^x$ sous la contrainte x y = 0.
- 2. Optimiser f définie par $f(x;y) = x^2y$ sous la contrainte $(x;y) \in \partial \mathcal{B}(O;3) = \mathcal{C}(O;3)$
- 3. Optimiser $f(x; y; z) = x^2 + y^2 + z$ sous la contrainte $x 2y^2 + z = 0$
- 4. Optimiser f définie sur \mathbb{R}^3 par $f(X) = ||X||_2^2$ sous les contraintes $x^2 + y^2 + 2z = 6$ et x y z = 0.
- 5. Optimiser $f(x;y) = \frac{x+y}{xy}$ sous la contrainte $\ln x + \ln y = -2$.

On précisera au préalable le domaine \mathcal{D} de définition de f, ainsi que sa nature topologique.