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VAR à densité
Le théorème de transfert est une appellation qui recouvre de nombreux énoncés ayant un point commun : transférer un change-
ment de variable “aléatoire" dans un calcul d’intégrale ou de somme.
Ces différents énoncés sont les manifestations d’une même idée selon les contextes. Sans justifier de ce qui les associe, nous
admettrons que le présent supplément regroupe bien sous une même dénomination des résultats très similaires mais formulés
selon le contexte d’utilisation des variables aléatoires à densité.

Théorème de transfert : cas continu

Théorème de transfert (formulation ex-ECS) : Soit X une variable aléatoire ayant une densité fX nulle en dehors de
l’intervalle ]a; b[, avec −∞ ≤ a < b ≤ +∞ et soit g une fonction continue sur ]a; b[ éventuellement privé d’un nombre fini
de points.

E[g(X)] existe et est égale à
∫ b

a

g(t)fX(t) dt si et seulement si cette intégrale converge absolument.

Exemple 1 : On donne X dont la densité est fX(t) = 4t3 sit t ∈ [0; 1[ et nulle en dehors. On souhaite déterminer E[
√
X].

On a alors, dans ce cas, a = 0 et b = 1 et on travaille sur I =]0; 1[. La fonction g : t 7→
√
t est bien définie sur ]0; 1[ et on

peut calculer
∫ 1

0

√
t · 4t3 dt comme une intégrale sur un segment d’une fonction continue sur [0; 1] (par produit), ce qui assure

la convergence de l’intégrale (faussement impropre) et on calcule ainsi :

E[g(X)] = E[
√
X] =

∫ 1

0

4t
7
2 dt =

[
2× 4

9
t
9
2

]1
0

=
8

9

Démonstration : L’ancien programme ECS propose de limiter la démonstration au cas où g est de classe C1 sur ]a; b[ vérifiant
g′ strictement positive (ou strictement négative). De plus, cette démonstration, même restreinte à un cas particulier, n’est pas
exigible dans ce programme.

Si l’on examine la variable aléatoire Y = g(X) et que l’on suppose qu’elle admet une espérance, alors on peut écrire, par
définition :

E[Y ] =

∫ b

a

xfY (x) dx

les bornes a et b étant bien obtenues comme bornes de g(I) où X : Ω −→ R, en notant I = X(Ω) (en effet, g est continue donc
l’image de I est un intervalle par le théorème des valeurs intermédiaires). On va donc procéder à un changement de variables
x = g(t) permettant d’écrire dx = dg(t) = g′(t) dt et x = a ⇐⇒ t = g−1(a) et x = b ⇐⇒ t = g−1(b) pour changer les
bornes, ayant g′ strictement positive on aura g strictement croissante donc bijective de I =]α;β[ dans l’intervalle ]a; b[= g(I)
avec g(α) = a et g(β) = b. On réécrit alors :

E[Y ] = E[g(X)] =

∫ β

α

g(t)g′(t)fY (g(t)) dt

Il resterait donc à établir le lien entre la densité fX de X et celle fY de Y . Pour ce faire, passons par les fonctions de répartition :

∀x ∈]a; b[
∫ x

−∞
fY (t) = FY (x) = P[Y ≤ x] = P[g(X) ≤ x] = P[X ≤ g−1(x)] =

∫ g−1(x)

−∞
fX(t) dt

et ainsi, en rappelant que les fonctions de répartition sont de limite nulle en −∞, le lecteur avisé montrera qu’en dérivant selon
x on obtient :

fY (x) = (g−1)′(x)fX
(
g−1(x)

)
⇐⇒ fY (x) =

1

g′(g−1(x))
fX

(
g−1(x)

)
⇐⇒ g′(g−1(x))fY (x) = fX

(
g−1(x)

)
En posant enfin t = g−1(x), et ainsi g(t) = x par le caractère bijectif de g dans le cas traité, (on peut utiliser g′ > 0 aussi bien
que g′ < 0) ceci se réécrit g′(t) = fY (g(t)) = fX(t) et ce, pour tout t de g−1(I) = g−1(]a; b[) =]α;β[. Le lecteur conclura en
combinant les éléments établis.
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Théorème de transfert (formulation selon Gastineau) : Soit f une densité d’une variable aléatoire X et φ une fonction
définie sur R. Sous réserve d’existence (si l’intégrale est absolument convergente) on a :

E[φ(X)] =

∫ +∞

−∞
φ(x)f(x)dx

L’idée est, ici, de restreindre l’utilisation aux cas d’une fonction φ qui n’aurait pas de problème de domaine de définition pour la
composer avec X . En particulier, on peut définir les moments d’ordre r ∈ N∗ puisque x 7→ xr est définie sur R, tout comme les
fonctions affines.

Exemple 2 : Soit X une variable aléatoire à densité fX (donc définie sur R, quitte à poser fX(x) = 0 si x /∈ X(Ω)). Les
fonctions x 7→ xn sont définies et continues pour tout n ∈ N∗ et on a alors, par le théorème de transfert :

mr(X) = E[Xr] =

∫ +∞

−∞
xrfX(x) dx

sous couvert de convergence de cette dernière intégrale (en pratique, on la vérifiera). Ce résultat peut être retenu car souvent usité
dans les problèmes en lien avec les probabilités à densité.

Théorème de transfert (formulation expansive) : Soit X une variable aléatoire à valeurs dans I , un intervalle, et g définie
sur J contenant I , intégrable sur I . Si a et b sont les bornes de I (dans cet ordre) alors, sous couvert de convergence, on a :

E[g(X)] =

∫ b

a

g(t)fX(t) dt

Cette formulation a l’avantage de regrouper les cas où l’intervalle I est un segment comme un ouvert afin d’éviter d’avoir à prou-
ver la convergence dans ce cas, mais permet la souplesse de s’appliquer aussi au cas où l’intégrale serait impropre. La tournure g
est intégrable est plus expansive que g est continue sauf sur un nombre fini de points, ce dernier cas ne regroupant pas toutes les
possibilités d’utilisation.

Remarque : Si fX est nulle hors du domaine D ⊂ R (D est alors le support de X), on pourrait écrire fX = fX · 1D. Avec la
convention que, si x /∈ D alors la nullité de l’indicatrice 1D(x) est prioritaire sur l’évaluation (éventuellement impossible) de g
en x, on pourrait réécrire :

E[g(X)] =

∫ +∞

−∞
g(t) fX(t) · 1D(t)︸ ︷︷ ︸ dt = E[g(X)] =

∫ +∞

−∞
g(t)fX(t) dt

sous couvert de convergence, et sans souci du domaine de définition réel de g. Cette pratique est à éviter en ensD2 (comme en
filière EC) mais s’approche davantage de la formulation plus aboutie en mathématiques.
On peut lire par exemple, à cette fin, Calcul des Probabilités de D. Foata et A. Fuchs.
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