Lois usuelles discrètes

Nous proposons de résumer les lois usuelles au moyen de cartes d'identité des lois

Lois finies

Les lois de cette section sont dites *finies*, c'est-à-dire correspondent aux cas de type card $[X(\Omega)] \in \mathbb{N}$

Loi Certaine

Utilisation: Intérêt théorique, rejet d'hypothèse d'aléatoire. Issue déterministe

Notation : On écrit souvent 1 pour désigner une variable aléatoire certaine égale à 1. On pourra donc écrire a1 pour désigner une variable aléatoire certaine égale à $a \in \mathbb{R}$.

Ensemble de valeurs On a $\mathbb{1}(\Omega) = \{1\}$ et donc $a\mathbb{1}(\Omega) = \{a\}$

Loi de probabilité : a étant un réel fixé, si X suit la même loi certaine que $a\mathbb{1}$ alors :

x	a	$\neq a$
$\mathbb{P}[X=x]$	1	0

Indicateurs: Le couple espérance-variance est donné par :

- $\mathbb{E}[1] = 1$ et (par linéarité) $\mathbb{E}[a1] = a$
- $\mathbb{V}[\mathbb{1}] = 0$ et $\mathbb{V}[a\mathbb{1}] = 0$

Loi Uniforme (discrète)

Utilisation: Situation d'équiprobabilité générant des nombres entiers de a à b.

Notation : On écrit $\mathcal{U}[a; b]$ avec $a \leq b$ entiers.

Ensemble de valeurs Si X suit une loi $\mathcal{U}[a;b]$ alors $X(\Omega) = [a;b]$ de cardinal N = b - a + 1.

Loi de probabilité : Les paramètres a et b étant des entiers naturels avec a < b on a :

$$\forall k \in [\![a \ ; \ b]\!] \quad \mathbb{P}[X=k] = \frac{1}{b-a+1} \qquad ; \quad \text{ sous forme de tableau} :$$

	x	a	a+1	 b
$\mathbb{P}[X]$	=x]	$\frac{1}{b-a+1}$	$\frac{1}{b-a+1}$	 $\frac{1}{b-a+1}$

Remarque : Si a = b, la loi est certaine.

Indicateurs: Le couple espérance-variance de $X \hookrightarrow \mathcal{U}[a; b]$ est donné par :

•
$$\mathbb{E}[X] = \frac{b+a}{2}$$

•
$$\mathbb{E}[X] = \frac{1}{2}$$

• $\mathbb{V}[X] = \frac{N^2 - 1}{12}$ où $N = b - a + 1$.
Attendu: Sayoir retrouver une loi unifor

Attendu : Savoir retrouver une loi uniforme $\mathcal{U}[a;b]$ avec a < b entiers, à partir de la connaissance particulière de $\mathcal{U}[1;n]$, au moyen de la transformation :

$$X = U - 1 + a$$

avec $U \hookrightarrow \mathcal{U}[1; n]$ en posant n = b - a + 1. Les valeurs a et 1 sont assimilables aux variables certaines a1 et a1 respectivement.

1

Fiche Lois

Lycée Turgot Ens D2 2025 / 2026

Loi de Bernoulli

<u>Utilisation</u>: Etude d'<u>une</u> expérience générique avec discrimination type *succès* / *échec*.

On encode en binaire la réalisation du succès :

événement	Succès	Echec
VAR	1	0

Notation : On écrit $\mathcal{B}(p)$ avec p probabilité du succès.

Ensemble de valeurs Si X suit une loi $\mathcal{B}(p)$ alors $X(\Omega) = \{0, 1\}$.

Loi de probabilité : Le paramètre p étant dans [0; 1] on a :

x	0	$\neq 1$
$\mathbb{P}[X=x]$	1-p	p

Indicateurs: Le couple espérance-variance de $X \hookrightarrow \mathcal{B}(p)$ est donné par :

- $\mathbb{E}[X] = p$
- $\mathbb{V}[X] = p(1-p)$

Loi Binomiale

Utilisation : Nombre de succès d'un schéma de Bernoulli à n répétitions.

On peut aussi la voir comme somme de variables de Bernoulli indépendantes et de même paramètre p.

Notation : On écrit $\mathcal{B}(n;p)$ avec p probabilité du succès et n le nombre d'épreuves réaliées.

Ensemble de valeurs Si X suit une loi $\mathcal{B}(n;p)$ alors $X(\Omega) = [0; n]$.

Loi de probabilité : Le paramètre p étant dans [0;1] et n étant un entier naturel on a :

$$\forall k \le n \ \mathbb{P}[X = k] = \binom{n}{k} p^k (1 - p)^{n - k}$$

Indicateurs : Le couple espérance-variance de $X \hookrightarrow \mathcal{B}(n;p)$ est donné par :

- $\bullet \ \mathbb{E}[X] = np$
- $\mathbb{V}[X] = np(1-p)$

voir fiche -loi binomiale- pour plus de détails

Loi Hypergéométrique

<u>Utilisation</u>: nombre d'objets "gagnants" dans une répétition de r tirages sans remise d'éléments d'un type "gagnant" donné, en quantité N, dans un ensemble comprenant initialement M objets (chaque tirage pris de façon isolée, étant en situation d'équiprobabilités au sein des objets encore à tirer)

On peut aussi considérer les tirages comme simultanés

Notation: On écrit $\mathcal{H}(r; N; M)$ avec r nombre d'objets tirés, N nombre d'objets gagnants et $\max(r; N) \leq M$ nombre total d'objets.

Ensemble de valeurs Si X suit une loi $\mathcal{H}(r; N; M)$ alors $X(\Omega) = [\max\{0; r - (M - N)\}; \min(r; N)]$.

Loi de probabilité : Pour $r \in \mathbb{N}^*$, $N \in \mathbb{N}$ et $M \ge \max(r; N)$ entier naturel :

$$\forall k \le N \quad \mathbb{P}[X = k] = \frac{\binom{N}{k} \binom{M-N}{r-k}}{\binom{M}{r}}$$

Indicateurs : Le couple espérance-variance de $X \hookrightarrow \mathcal{H}(r; N; M)$ est donné par :

2 Fiche Lois

 M^r Hemon

•
$$\mathbb{E}[X] = \frac{rN}{M}$$

•
$$\mathbb{E}[X] = \frac{rN}{M}$$
• $\mathbb{V}[X] = r\frac{N}{M} \times \frac{M-N}{M} \times \frac{M-r}{M-1}$

Remarque : On peut reprendre et réécrire toute cette étude en posant $p=\frac{N}{M}$ proportion d'objets gagnants. On peut alors généraliser la loi en remplaçant le paramètre N par $p \in [0;1]$ (choix actuellement en vigueur sur wikipédia, par exemple)

Lois discrètes infinies

Dans cette section, les variables aléatoires réelles étudiées vérifient : $X(\Omega)$ est en bijection avec $\mathbb N$

Loi géométrique

Utilisation: nombre de répétitions effectuées dans un schéma de Bernoulli amenant le premier succès. On peut aussi la voir comme temps discret d'attente du premier succès.

Notation : On écrit $\mathcal{G}(p)$ avec $p \in]0;1[$ probabilité du succès.

Ensemble de valeurs Si X suit une loi $\mathcal{G}(p)$ alors $X(\Omega) = \mathbb{N}^*$.

Loi de probabilité : Le paramètre p étant dans]0;1[on a :

$$\forall n \in \mathbb{N}^* \ \mathbb{P}[X=n] = p(1-p)^{n-1}$$

Indicateurs : Le couple espérance-variance de $X \hookrightarrow \mathcal{G}(p)$ est donné par :

$$\bullet \mathbb{E}[X] = \frac{1}{p}$$

•
$$\mathbb{V}[X] = (1-p)p^{-2} = \frac{1-p}{p^2}$$

Loi de Poisson

Utilisation: En dehors d'une reconnaissance formelle, ou d'une mention explicite de cette loi dans un énoncé, il n'est pas attendu de savoir reconnaître une situation concrète relevant de la loi de Poisson.

Notation : On écrit $\mathcal{P}(\lambda)$ avec $\lambda > 0$ paramètre

Ensemble de valeurs Si X suit une loi $\mathcal{P}(\lambda)$ alors $X(\Omega) = \mathbb{N}$.

Loi de probabilité : Le paramètre λ étant dans \mathbb{R}_+^* on a :

$$\forall n \in \mathbb{N} \ \mathbb{P}[X=n] = e^{-\lambda} \cdot \frac{\lambda^n}{n!}$$

Indicateurs: Le couple espérance-variance de $X \hookrightarrow \mathcal{P}(\lambda)$ est donné par :

- $\mathbb{E}[X] = \lambda$
- $\mathbb{V}[X] = \lambda$

3