Formulaire

Le présent document a pour but de recenser les diverses formules (générales) les plus classiques (et attendues) en probablités (hors définitions).

Le symbole o fait figure de formule supposée déjà connue au lycée.

Le symbole \square mentionne les formules de CPGE dont la connaissance est attendue et exigible.

Probabilités Générales

On se place dans un espace probabilisé $(\Omega; A; \mathbb{P})$ dans toute cette section.

o Probabilités uniformes :

Si \mathbb{P} est la probabilité uniforme sur $(\Omega; \mathcal{A}; \mathbb{P})$ fini, alors pour tout $A \in \mathcal{A}$ on a $\mathbb{P}(A) = \frac{\#A}{\#\Omega}$

 \circ Formules du crible (Poincaré) - cas n=2:

Si A et B sont deux événements de $(\Omega; A; \mathbb{P})$ alors :

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

 \square Formules du crible (Poincaré) cas n=3:

Si A, B et C sont trois événements de $(\Omega; A; \mathbb{P})$ alors :

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(B \cap C) - \mathbb{P}(A \cap C) + \mathbb{P}(A \cap B \cap C)$$

Le cas n le plus général n'est pas un attendu du cycle préparatoire.

o Croissance des probabilités :

Si $A \subset B$ sont deux événements de $(\Omega; A; \mathbb{P})$ alors $\mathbb{P}(A) \leq \mathbb{P}(B)$.

- ☐ Théorème de limite monotone :
 - Théorème de limite monotone : Pour toute suite croissante (au sens de l'inclusion) d'événements $(A_n)_{n\in\mathbb{N}}$ on a $\mathbb{P}\left(\bigcup_{n=0}^{+\infty}A_n\right)=\lim_{n\to+\infty}\mathbb{P}(A_n)$
 - Pour toute suite décroissante (au sens de l'inclusion) d'événements $(A_n)_{n\in\mathbb{N}}$ on a $\mathbb{P}\left(\bigcap_{n=1}^{+\infty}A_n\right)=\lim_{n\to+\infty}\mathbb{P}(A_n)$
- ☐ Corollaire du Théorème de limite monotone :

Pour toute suite d'événements $(A_n)_{n\in\mathbb{N}}$ on a :

•
$$\mathbb{P}\left(\bigcup_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} \mathbb{P}\left(\bigcup_{k=0}^{n} A_k\right)$$

• $\mathbb{P}\left(\bigcap_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} \mathbb{P}\left(\bigcap_{k=0}^{n} A_k\right)$

•
$$\mathbb{P}\left(\bigcap_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} \mathbb{P}\left(\bigcap_{k=0}^{n} A_k\right)$$

☐ Convexité des probabilités :

Pour $(A_n)_{n\in\mathbb{N}}$ une famille dénombrable d'événements de $(\Omega; \mathcal{A}; \mathbb{P})$, on a l'inégalité :

$$\mathbb{P}\left[\bigcup_{n\in\mathbb{N}}A_n\right] \le \sum_{n=0}^{+\infty}\mathbb{P}[A_n]$$

(le second membre pouvant être éventuellement $+\infty$).

o Formule des probabilités totales (cas fini) :

Soit N un entier naturel non nul. Si $(A_n)_{n\leq N}$ est un système complet d'événements, alors pour tout $B\in\mathcal{A}$ on a :

$$\mathbb{P}(B) = \sum_{n \le N} \mathbb{P}(B \cap A_n)$$

Si, de plus, les A_n sont tous de probabilités respectives non nulles alors :

$$\mathbb{P}(B) = \sum_{n \le N} \mathbb{P}(A_n) \mathbb{P}_{A_n}(B)$$

☐ Formule des probabilités totales (cas général) :

Soit $I \subset \mathbb{N}$ donné. Si $(A_n)_{n \in I}$ est un système complet d'événements, alors pour tout $B \in \mathcal{A}$ on a :

$$\mathbb{P}(B) = \sum_{i \in I} \mathbb{P}(B \cap A_i)$$

Si, de plus, les A_i sont tous de probabilités respectives non nulles alors :

$$\mathbb{P}(B) = \sum_{i \in I} \mathbb{P}(A_i) \mathbb{P}_{A_i}(B)$$

et chacune des ces sommes converge.

☐ Formule des probabilités composées :

Soient $A_1 \dots A_n$ des événéments tels que $A_1 \cap \dots \cap A_{n-1}$ ne soit pas négligeable. Alors :

$$\mathbb{P}(A_1 \cap A_2 \cap \dots \cap A_n) = \mathbb{P}(A_1) \cdot \mathbb{P}_{A_1}(A_2) \cdot \mathbb{P}_{A_1 \cap A_2}(A_3) \cdots \mathbb{P}_{A_1 \cap \dots \cap A_{n-1}}(A_n)$$

\Box Formule de bayes (cas fini) :

Soit N un entier naturel non nul. Si $(A_n)_{n \leq N}$ est un système complet d'événements, alors pour tout $B \in \mathcal{A}$ non-négligeable on a:

$$\forall i \leq N \quad \mathbb{P}_B(A_i) = \frac{\mathbb{P}(A_i \cap B)}{\sum_{n \leq N} \mathbb{P}(B \cap A_n)}$$

Si, de plus, les A_n sont tous non-négligeables alors :

$$\forall i \leq N \quad \mathbb{P}_B(A_i) = \frac{\mathbb{P}(A_i \cap B)}{\sum\limits_{n \leq N} \mathbb{P}(A_n) \cdot \mathbb{P}_{A_n}(B)} = \frac{\mathbb{P}(A_i) \cdot \mathbb{P}_{A_i}(B)}{\sum\limits_{n \leq N} \mathbb{P}(A_n) \cdot \mathbb{P}_{A_n}(B)}$$

☐ Formule de bayes (cas général) :

Soit $I \subset \mathbb{N}$ donné. Si $(A_n)_{n \in I}$ est un système complet d'événements, alors pour tout $B \in \mathcal{A}$ non-négligeable on a :

$$\forall i \in I \quad \mathbb{P}_B(A_i) = \frac{\mathbb{P}(A_i \cap B)}{\sum_{n \in I} \mathbb{P}(B \cap A_n)}$$

Si, de plus, les A_n sont tous non-négligeables alors :

$$\forall i \in I \quad \mathbb{P}_B(A_i) = \frac{\mathbb{P}(A_i \cap B)}{\sum_{n \in I} \mathbb{P}(A_n) \cdot \mathbb{P}_{A_n}(B)} = \frac{\mathbb{P}(A_i) \cdot \mathbb{P}_{A_i}(B)}{\sum_{n \in I} \mathbb{P}(A_n) \cdot \mathbb{P}_{A_n}(B)}$$