$\frac{M^r \text{ Hemon}}{}$

Applications linéaires

Exercice f Pour chaque application proposée, dire si elle est linéaire de E vers F pour les espaces proposés :

$$1 \quad x \mapsto 2x^{2} \qquad \qquad 6 \quad (x; y; z) \mapsto \begin{pmatrix} 2 & 1 & -3 \\ 2 & 6 & 0 \\ -2 & 5 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$(E = \mathbb{R}^{3} \; ; \; F = \mathcal{M}_{3}(\mathbb{R}))$$

$$2 \quad (x;y) \mapsto 2x - 4y + 2$$

$$(E = \mathbb{R}^2 \; ; \; F = \mathbb{R})$$

$$7 \quad X = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \mapsto \begin{pmatrix} y \\ t \end{pmatrix}$$

$$(E = \mathcal{M}_2(\mathbb{R}) \; ; \; F = \mathcal{M}_{2,1}(\mathbb{R}))$$

$$4 \quad X = \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -2 & 3 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \qquad \qquad 9 \quad M \mapsto \begin{pmatrix} 1 & 3 & 0 \\ -1 & 2 & 0 \\ 5 & 2 & 0 \end{pmatrix} M$$

$$(E = \mathcal{M}_2(\mathbb{R}) \; ; \; F = \mathcal{M}_2(\mathbb{R})) \qquad \qquad ((E = \mathcal{M}_{3,8}(\mathbb{R}) \; ; \; F = \mathcal{M}_{3,8}(\mathbb{R}))$$

5
$$(x_1; ...; x_n) \mapsto \max_{i \le n} x_i$$
 10 $(x_1; x_2; ...; x_{n-1}; x_n) \mapsto (x_2; ...; x_{n-1})$
 $(E = \mathbb{R}^n; F = \mathbb{R})$ $(E = \mathbb{R}^n; F = \mathbb{R}^{n-2})$

Parmi les applications linéaires, lesquelles sont des endomorphismes?

Exercice 1 Soit $n \in \mathbb{N}^*$. On se donne, pour $1 \leq k \leq n$, une application π_k définie sur \mathbb{R}^n par $\pi_k(chu) = x_k$ où l'on note $chu = (x_1 \; ; \; x_2 \; \ldots \; ; \; x_n) \in \mathbb{R}^n$.

Etablir que π_k est une application linéaire de \mathbb{R}^n dans \mathbb{R} . On l'appelle projection canonique selon la kième coordonnée.

Exercice $\boxed{\mathbf{2}}$ Soit E un espace vectoriel. Etablir que les applications suivantes sont linéaires :

Exercice 3 Pour une série statistique quantitative de valeurs réelles x_1 ; x_2 ; \cdots ; x_n , on désigne par \bar{x} sa moyenne et σ_x son écart-type.

Dans toute la suite, n est un entier naturel non nul fixé.

- 1. Démontrer que l'application $(x_1 \dots x_n) \mapsto \bar{x}$ est linéaire en précisant les espaces de départ et d'arrivée. Qu'en est-il de $(x_1 \dots x_n) \mapsto \sigma_x$?
- 2. Soient $P = (p_i)_{i \le n}$ une *n*-liste de *poids* strictement positifs. On rappelle que la moyenne pondérée par les poids $p_1 \dots p_n$ se calcule :

$$\mu_P(x) = \frac{p_1 x_1 + p_2 x_2 + \dots + p_n x_n}{p_1 + p_2 + \dots + p_n}$$

Etablir que $\mu_P: x \mapsto \mu_P(x)$ est également linéaire sur les mêmes espaces.

- 3. On fixe $x=(x_1\dots x_n)$. Peut-on dire que $\psi:P\mapsto \mu_P(x)$ est linéaire?
- 4. Déterminer la dimension de $ker(\mu_P)$. En donner une représentation graphique pour n=2 avec $p_1=p_2=1$.

Exercice 4 $\bullet \Theta^{C\sharp}$ On se place dans l'espace $E = \mathcal{M}_n(\mathbb{R})$ des matrices carrées d'ordre $n \geq 2$.

- 1. Démontrer que $trans: X \mapsto {}^tX$ est linéaire et en déterminer le noyau. En déduire que trans est un automorphisme de E.
- 2. On définit sur E l'application trace notée tr par : $tr: X \mapsto \sum_{k=1}^n X_{kk}$.

Justifier que tr est une forme linéaire de E puis déterminer une base et la dimension de son noyau.

3. L'application $det: M \mapsto det(M)$ est-elle linéaire sur E?

Exercice 5 $\bullet \Theta^{C\sharp}$ On se donne φ définie sur \mathbb{R}^3 par $\varphi(x;y;z)=(3x-2y+z;2y-z)$. Identifier $ker(\varphi)$ ainsi $Im(\varphi)$ en précisant les espaces vectoriels de référence dans lesquels ils sont inclus.

Exercice $\boxed{\mathbf{6}}$ $\bullet \Theta^{\mathbb{C}\sharp}$ On considère une application linéaire $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ satisfaisant les relations suivantes :

$$\varphi(2;1) = (1;0;1)$$
 ; $\varphi(-1;1) = (0;1;1)$

Démontrer qu'il existe une unique φ ainsi définie et déterminer son noyau et son image.

Exercice $\boxed{\mathbf{7}}$ $\bullet \Theta^{\mathbb{C}\sharp}$ On se donne φ définie sur \mathbb{R}^2 , une application linéaire dont le noyau est K = vect(1; -2) et l'image vect(2; 1; 0). Décrire une telle application φ au moyen de son expression générale, identifier ses espaces de départ et d'arrivée. Y-a-t-il unicité d'une telle application φ ?

Exercice $\boxed{\mathbf{8}}$ $\bullet \Theta^{\mathbb{C}\sharp}$ On note $(e_1; e_2; e_3)$ la base canonique de \mathbb{R}^3 . On pose ensuite, pour $\varphi \in \mathcal{L}(\mathbb{R}^3)$:

$$\varphi(e_1) = e_2 - e_3$$
 ; $\varphi(e_2) = 2e_1 + 3e_2 + e_3$; $\varphi(e_3) = e_1 - 4e_2 + e_3$

Expliciter $\varphi(x;y;z)$ de façon générale et déterminer noyau et image de φ . Cette application est-elle un isomorphisme?

Exercice 9 $\bullet \Theta^{C\sharp}$ On considère les applications u et v définies sur \mathbb{R}^4 par :

$$u(x; y; z; t) = (x; -y; x + z; 2t)$$
; $v(x; y; z; t) = (y; x; x - z; t)$

- 1. Vérifier que u et v sont des automorphismes.
- 2. Justifier que u + v et u v sont des applications linéaires. Sont-ce des automorphismes?

Exercice 10 Une caractérisation à retenir

Soit E un \mathbb{K} espace vectoriel et $f \in \mathcal{L}(E)$. Démontrer qu'on a :

$$E = ker(f) \oplus im(f) \Leftrightarrow ker(f) = ker(f^2) \wedge im(f) = im(f^2)$$

Exercice $\boxed{11}$ $\bullet \Theta^{C\sharp}$ Une étude des hyperplans

On se place dans l'espace vectoriel \mathbb{R}^n . On note φ une forme linéaire définie sur \mathbb{R}^n .

- 1. Démontrer que, si φ est non nulle, le noyau de φ est de dimension n-1.
- 2. Justifier que la matrice de φ dans la base canonique est une matrice ligne. On note alors $A = (a_1; \dots; a_n)$ cette matrice ligne.
- 3. Justifier que le noyau de φ s'écrit $\{(x_1 \dots x_n) \in \mathbb{R}^n \mid a_1 x_1 + \dots + a_n x_n = 0\}$.
- 4. Etablir que tout ensemble de la forme $\{(x_1 \dots x_n) \in \mathbb{R}^n \mid a_1 x_1 + \dots + a_n x_n = 0\}$ est le noyau d'une forme linéaire.
- 5. En déduire que les solutions de tout système linéaire homogène forment un espace vectoriel.

Exercice 12 A partir des matrices

Les matrices suivantes représentent des applications linéaires dans les bases canoniques de \mathbb{R}^3 . Donner les noyau et image respectifs de ces applications (dont on donnera une base et la dimension).

$$A = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix} \quad ; \quad B = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 2 & 4 \\ 4 & 0 & 10 \end{pmatrix} \quad ; \quad C = \begin{pmatrix} 3 & -6 & 1 \\ -13 & 24 & -4 \\ 6 & -12 & 2 \end{pmatrix}$$

Exercice 13 Donner les matrices

- 1. Pour chaque application définie, vérifier qu'elle est linéaire puis donner sa matrice relativement aux bases canoniques. On veillera à identifier si besoin les espaces vectoriels de départ et d'arrivée.
 - (a) L'application $f:(x;y)\mapsto (2x-y;3y)$
 - (b) L'application $g:(x;y;z;t)\mapsto (z-x;y+2t;x+y+z-t)$
 - (c) L'application $h:(x;y;z)\mapsto (x+y+z;3z-2y)$
 - (d) L'application $M_A: X \mapsto \begin{pmatrix} 2 & 4 & -1 \\ 0 & 2 & 1 \\ -2 & 3 & 0 \end{pmatrix} X \text{ avec } X \in \mathcal{M}_3(\mathbb{R})$
- 2. Pour chacune des applications précédentes, déterminer l'image et le noyau. On indiquera leurs dimensions respectives.

Exercice 14 On note f et g les endomorphismes de \mathbb{R}^3 admettant pour matrices respectives, relativement aux bases canoniques :

$$Mat_f = A = \begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & -2 \\ 0 & 4 & 3 \end{pmatrix}$$
 ; $Mat_g = B = \begin{pmatrix} 3 & -3 & -2 \\ -2 & 1 & 2 \\ 3 & -2 & -2 \end{pmatrix}$

- 1. Démontrer que $\mathcal{B} = (u_1; u_2; u_3)$ avec $u_1 = (1; -1; 1)$ et $u_2 = (1; 0; 0)$ et $u_3 = (0; -1; 2)$ est une base de \mathbb{R}^3 .
- 2. Déterminer les matrices de f et g relativement à la base \mathcal{B} .
- 3. Démontrer que $C = (u_3 u_1 + 2u_2; u_2 u_1; u_1)$ avec $v_1 = (1; 0; 1)$ est une base de \mathbb{R}^3 .
- 4. Déterminer les matrices de f et g relativement à la base C.

Exercice 15 Déterminer les rangs des matrices suivantes :

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -1 & 0 \end{pmatrix} \quad ; \quad B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \quad ; \quad C = \begin{pmatrix} 1 & 1 & 1 & 3 \\ 2 & 3 & 0 & 4 \\ 2 & 5 & -4 & 0 \end{pmatrix} \quad ; \quad D = \begin{pmatrix} 2 & 2 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{pmatrix}$$

Exercice 16 Déterminer, en fonction de $a \in \mathbb{R}$, le rang de la matrice $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{pmatrix}$.

Dans le cas où A serait inversible, préciser son inverse.

Exercice 17 Pour a et b deux réels donnés, on définit la matrice $A = \begin{pmatrix} a & 2 & -1 & b \\ 3 & 0 & 1 & -4 \\ 5 & 4 & -1 & 2 \end{pmatrix}$

Démontrer que $rg(A) \ge 2$. Pour quelles valeurs de a et de b a-t-on rg(A) = 2?

Exercice 18 Soit E le \mathbb{R} -espace vectoriel \mathbb{R}^3 .

On définit un endomorphisme f de E tel que $\mathcal{M}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$ avec \mathcal{B} base canonique de \mathbb{R}^3 .

Justifier que $E = Ker(f) \oplus Im(f)$. A-t-on f projecteur?

Algèbre Linéaire

 M^r Hemon

Exercice 19 Déterminer les valeurs propres de la matrice $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & -2 & 3 \end{pmatrix}$ et expliciter les sous-espaces propres associés.

Exercice 20 On rappelle que la matrice Attila d'ordre $n \in \mathbb{N}^*$ est la matrice $H_n \in \mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont des uns. Retrouver la relation liant H_n^k avec H_n (pour $k \in \mathbb{N}^*$) et en déduire les valeurs propres de H_n . Quel est le rang de H_n ?

Exercice 21 (D'après EML 2014 voie E)

$$\text{Soit } E = \mathcal{M}_2(\mathbb{R}) \text{ et } F = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \; \; ; \; \; (a;b;c) \in \mathbb{R}^3 \right\}.$$

- 1. Démontrer que F est un sous-espace vectoriel de E et en donner une base.
- 2. On note $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et on définit f sur F par f(N) = TNT. Justifier que $f \in GL(F)$.
- 3. La famille $\mathcal{B} = (E_{1\,1}; E_{1\,2}; E_{2\,1}; E_{2\,2})$ désigne la base canonique de E. Démontrer que la sous-famille $A = (E_{1\ 1}; E_{1\ 2}; E_{2\ 2})$ est une base de F.
- 4. Déterminer $\mathcal{M}_{\mathcal{A}}(f)$, la matrice de f relativement à la base \mathcal{A} .
- 5. Etablir que, pour tout $\lambda \in \mathbb{R}$, l'ensemble $S_{\lambda} = \{M \in F ; f(M) = \lambda M\}$ est un sous-espace vectoriel de F.
- 6. Déterminer les $\lambda \in \mathbb{R}$ pour lesquels S_{λ} est de dimension non nulle.

Exercice 22 (D'après concours ENS-D2 Paris-Saclay 2016)

On considère les applications u et v définies par :

- 1. Vérifier que u est une application linéaire et en donner la matrice H relativement aux bases canoniques.
- 2. Donner, de même, la matrice K de v relativement aux bases canoniques.
- 3. Déterminer le noyau de u. L'application u est-elle injective? Procéder de même avec v.
- 4. Déterminer l'image de u. L'application u est-elle surjective? Procéder de même avec v.
- 5. Calculer le produit HK et établir que $(HK)^2 = \lambda I_2$ où l'on déterminera le réel λ .
- 6. Démontrer sans calcul que HK est inversible. Quelles en sont les valeurs propres ?
- 7. Déterminer $(u \circ v)^2$

Exercice 23 (D'après oral HEC -voie E)

Soit f un endomorphisme de \mathbb{R}^3 dont la matrice de représentation dans la base canonique est :

$$A = \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- 1. Démontrer que $2f f^2 = id_{\mathbb{R}^3}$. L'application f est-elle un projecteur?
- 2. Justifier que f est un automorphisme de \mathbb{R}^3 . En donner l'automorphisme réciproque.
- 3. Démontrer que la seule valeur propre de f est 1. Décrire l'espace propre associé.
- 4. Démontrer qu'on ne peut trouver de matrice P inversible telle que $P^{-1}AP$ soit diagonale.
- 5. Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de f soit $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
- 6. Calculer explicitement A^n en fonction de $n \in \mathbb{N}$.