M^r Hemon

Relations Binaires

Exercice $\boxed{\mathbf{1}}$ Pour chaque relation binaire définie sur E donnée, étudier (en justifiant) leur réflexivité, symétrie et transitivité :

- 1. Sur $E = \mathbb{R}$, on écrit $x \circ y$ lorsque xy = 0
- 2. Sur $E = \mathbb{Z}$, on écrit n = 3 k lorsque l'entier n k est divisble par 3
- 3. Sur $E = \mathbb{R}^{\mathbb{R}}$, on écrit $f \doteq g$ lorsque les fonctions f et g vérifient $\exists x \in \mathbb{R} \ f(x) = g(x)$
- 4. Sur $E=\mathcal{M}_n(R)$ avec $n\geq 2$ entier, on écrit $A\sim B$ lorsque $\sum_{i=1}^n a_{ii}=\sum_{i=1}^n b_{ii}$

Conclure en indiquant, le cas échéant, les relations d'équivalence.

Exercice 2 Pour chaque relation binaire donnée, indiquez, en justifiant, celles qui sont des ordres (larges). Le cas échéant, précisez si l'odre est total ou partiel.

- 1. Sur $E = \mathbb{R}^I$, on écrit $f \leq_I g$ lorsque $\forall x \in I \quad f(x) \leq g(x)$
- 2. Sur Λ^* , ensemble des mots de la langue française, on écrit $\omega \prec \zeta$ lorsque le mot ω apparaît dans l'écriture du mot ζ . *Exemple*: si x =chat et y =chaton, on étudie l'écriture chat on et on a donc $x \prec y$
- 3. Sur $E = \mathbb{R}[X]$, ensemble des polynômes à coefficients réels, on écrit $P \downarrow Q$ lorsque $deg(P) \leq deg(Q)$.
- 4. Sur $E = \mathbb{R}^2$, on définit $(x; y) \prec (z; t)$ lorsque $x < z \lor (x = z \land y \le t)$

Exercice 3 Des relations connues

- 1. Pour chacune des relations binaires fournies, indiquer les propriétés valables parmi *réfléxivité*, *symétrie*, *antisymétrie*, *transitivité*.
 - (a) Les événements d'une même tribu A sont *indépendants*
 - (b) Les événements d'une même tribu A sont *incompatibles*
 - (c) Les événements d'une même tribu A sont équiprobables (i.e. A et B vérifient $\mathbb{P}[A] = \mathbb{P}[B]$.
 - (d) Les matrices A et B dites semblables d'ordre $n \in \mathbb{N}^*$, vérifiant $\exists P \in GL_n(\mathbb{R})$ $A = PBP^{-1}$
- 2. Indiquer ainsi les relations d'équivalences et d'ordre (larges) parmi les relations présentées.

Exercice 4 RàR: paradigmes des relations binaires

On considère une relation binaire \mathcal{R} définie sur un ensemble E.

1. (Paradigme ensembliste) On désigne par ${\cal R}$ le sous-ensemble de ${\cal E}^2$ défini par :

$$R = \{(x; y) \in E^2 \mid x\mathcal{R}y\}$$

et on appelle cet ensemble paradigme ensembliste de \mathcal{R} .

- (a) On prend pour \mathcal{R} la relation $\leq_{\mathbb{R}}$ d'ordre usuel sur \mathbb{R} . Représenter dans le plan usuel, assimilé à \mathcal{R}^2 , le paradigme ensembliste de $\leq_{\mathbb{R}}$
- (b) Même question avec la relation binaire définie par $x\mathcal{R}y \Leftrightarrow x^2 4x + 5 \le 2 + 5y y^2$
- 2. (Paradigme par graphe) On définit un graphe $\mathcal{G}_{\mathcal{R}}$ dont les sommets portent comme étiquettes les noms des objets de E. On relie deux sommets s et t par une arête [st] si, et seulement si, $s\mathcal{R}t$ est vérifié. Le graphe ainsi défini est un autre paradigme de \mathcal{R} .
 - (a) On note $\mathbb{B} = \{0; 1\}$ et on pose $E = \mathbb{B}^h$ avec $h \geq 2$ un entier naturel. On définit ensuite une relation binaire \mathcal{C}_h sur E par :

$$(b_1 \dots b_h) \mathcal{C}(b'_1 \dots b'_h) \Leftrightarrow \exists ! i \leq h \ b_i \neq b' i$$

Représenter le graphe associé à cette relation dans les cas h=2 et h=3

- (b) La représentation sous forme de graphe de C_h est nommée h-cube. Comment l'interprétez-vous?
- (c) On se donne cette fois-ci $E = \mathcal{P}([1;3])$ muni de la relation binaire (d'ordre) \subset . Représenter le graphe associé.

Exercice | 5 | On nomme application croissante de E dans F toute application $f: E \longrightarrow F$ avec $(E; \leq)$ et $(F; \prec)$ deux enembles ordonnés vérifiant :

$$\forall x \in E \ \forall y \in E \ x \le y \implies f(x) \prec f(y)$$

- 1. Soit $(\Omega; \mathcal{A}; \mathbb{P})$ un espace probabilisé. Justifier que \mathbb{P} est une application croissante de $(\mathcal{A}; \subset)$ dans $([0;1]; \leq)$,.
- 2. Proposez une définition d'application décroissante similaire.
- 3. Démontrer que la composée d'applications croissantes est croissante en précisant bien les hypothèses sur les domaines de chaque application.
- 4. Ecrire des résultats analogues avec la décroissance (et attention à la conclusion)

Exercice 6 Matrices équivalentes

On dit que deux matrices A et B de $\mathcal{M}_{n,m}(R)$ sont équivalentes lorsqu'elles vérifient :

il existe deux matrices inversibles P et Q, carrés d'ordres respectifs n et m, telles que $B = Q^{-1}AP$

- 1. On donne les matrices (lignes) $A = \begin{pmatrix} 2 & -3 \end{pmatrix}$ et $B = \begin{pmatrix} 3 & -2 \end{pmatrix}$. Sont-elles équivalentes?
- 2. De façon générale, si U est un vecteur ligne non nul à $n \ge 2$ coefficients, quelle est la classe d'équivalence de U?
- 3. Justifier que, si $A \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable, alors A est équivalente à la matrice D diagonale dont les coefficients diagonaux énumère les éléments de sp(A) (avec multiplicité)
- 4. Etablir que, quels que soient les entiers naturels n et m non nuls, la relation définie par "A et B sont des matrices *équivalentes*" définit une relation d'équivalence sur l'ensemble $\mathcal{M}_{n,m}(\mathbb{R})$.

On pourrait démontrer (plus longuement) que A et B sont équivalentes si, et seulement si, elles ont même rang. Il est beaucoup plus facile de montrer que l'on a affaire à une relation d'équivalence exprimé sous cette dernière forme. Voir le dernier exercice.

Exercice 7 RàR : équivalence en analyse Soit $a \in \overline{\mathbb{R}}$ fixé.

On définit la relation binaire \sim_a sur l'ensemble des fonctions définies non nulles au voisinage épointé de a par :

$$f \sim_a g \iff \lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

- 1. Vérifier, par la définition, que $\ln(1+x) \sim_0 x$ et que $e^x \sim_0 1+x+\frac{x^2}{2}$
- 2. A notion déjà rencontrée cette relation binaire renvoie-t-elle?
- 3. Démontrer que \sim_a définit ainsi une relation d'équivalence.
- 4. Que signifierait, pour f, que l'on a $f \sim_a O$? (la notation O désignant la fonction nulle)
- 5. Expliquer pourquoi, si f admet une limite finie $l \neq 0$ en a, il est préférable de retenir un équivalent (le plus simple possible) de f(x) - l au voisinage de a plutôt que de f(x).

Exercice 8 RàR: ordre strict en analyse

On définit la relation binaire $<<_a$ sur l'ensemble E des fonctions définies non (identiquement) nulles au voisinage épointé de a par :

$$f << g \iff f = o(g)$$
 (au voisinage de a)

- 1. Montrer que la relation $<<_a$ est transitive
- 2. Etablir que, si f et g sont deux applications de E vérifiant $f <<_a g$ alors on n'a pas $g <<_a f$
- 3. Justifier que $<<_a$ est anti-réflexive.

Une relation vérifiant ces propriétés est un ordre strict

- 4. Justifier qu'une relation d'ordre strict n'est pas totale.
- 5. On dit qu'un ordre strict, noté <, est *quasi-total* sur A lorsqu'il vérifie :

$$\forall (a;b) \in A^2 \ a \neq b \implies (a < b \land b < a)$$

La relation $<<_a$ définit-elle un ordre strict *quasi-total* sur E?

Exercice 9 Ordre vectoriel partiel mais naturel

On définit sur \mathbb{R}^n une relation binaire par : $\forall x \in \mathbb{R}^n \ \forall y \in \mathbb{R}^n \ x \prec y \iff \forall i \leq n \ x_i \leq y_i$

- 1. Pour n=2, représenter dans le plan les vecteurs $x\in\mathbb{R}^2$ vérifiant $x\prec(2;3)$ puis ceux vérifiant $x\prec(-2;1)$
- 2. Pour n=2, représenter dans le plan les vecteurs $y \in \mathbb{R}^2$ vérifiant $(-2, -3) \prec y$ puis ceux vérifiant $(2, -1) \prec y$
- 3. Vérifier que \prec définit une relation d'ordre sur \mathbb{R}^n , avec $n \in \mathbb{N}^*$. Cette dernière est-elle totale ? (discuter selon n)
- 4. Etablir que si F est un sous-espace vectoriel de \mathbb{R}^n avec dim(F) > 1, alors F ne possède ni majorant, ni minorant.

Cet ordre s'appelle ordre produit de \mathbb{R}^n . Il est utilisé en théorie des jeux pour l'appréciation d'un profil stratégique comparativement à un autre et intervient dans la recherche de "best responses".

Exercice 10 | Equivalence fonctionnelle

Soit f une application d'un ensemble E dans un ensemble F donnée.

On définit \equiv_f une relation binaire sur E par : $x \equiv_f y \iff f(x) = f(y)$

- 1. Démontrer que \equiv_f définit toujours une relation d'équivalence sur E.
- 2. Que représentent les classes d'équivalences pour \equiv_f ?
- 3. Etablir que, pour tout $(n; m) \in (\mathbb{N}^*)^2$ la relation définie sur les matrices de $\mathcal{M}_{n,m}(\mathbb{R})$ par :

" A et B sont de même rang"

définit une relation d'équivalence.

[en Autonomie :] Reprendre toutes les relations d'équivalences étudiées pour lesquelles cet exercice permet de conclure imémdiatement en réécrivant la relation binaire considérées sous une forme $xRy \iff \varphi(x) = \varphi(y)$ en identifiant bien l'application φ .

Pour la culture : Une application fondamentale en logique

La relation d'équivalence la plus fondamentale est très certainement \iff qui dit que deux propriétés sont, littéralement, équivalentes. On peut définir ce concept en considérant deux propositions \mathcal{P} et \mathcal{Q} et en les déclarant sémantiquement équivalentes lorsqu'elles ont le même sens.

Or, interpréter une proposition, c'est associer (fonctionnellement) du "sens" à un objet syntaxique : l'écriture de la proposition elle-même. On a donc :

$$\mathcal{P} \iff \mathcal{Q} \text{ si, et seulement si } \operatorname{sens}(\mathcal{P}) = \operatorname{sens}(\mathcal{Q})$$

Pour contourner la difficulté, les mathématiciens attribuent comme "sens" à une proposition sa valeur de vérité de sorte que:

$$|| \quad || : \left\{ \begin{array}{ccc} \mathcal{F}_L & \longrightarrow & \{0; 1\} \\ \mathcal{P} & \mapsto & || \mathcal{P} || \end{array} \right.$$

où l'on assimile 0 à faux et 1 à vrai et avec \mathcal{F}_L l'ensemble des formules que l'on peut écrire danns le langage L des mathématiques. Le résultat s'en suit.