Chapitre 2.III

Séries et VAR

Etude de séries

Pour prendre conscience

On notera S(x) la valeur réelle obtenue lorsque la série $\sum_{k=0}^{+\infty} x^k$ converge. Les sommes partielles $\sum_{k=0}^n x^k$ seront notées $S_n(x)$ et enfin, la fonction $x\mapsto \frac{1}{1-x}$ sera notée f .

- 1. Rappelez la nature de la série $\sum_{k=0}^{\infty} x^k$ en fonction de $x \in \mathbb{R}$. Comparez avec le domaine de définition réel de f.
- 2. Calculer S(0.1). Que représentent les sommes partielles $S_n(x) = \sum_{i=1}^n x^k$ pour x = 0.1?
- 3. Justifier que, pour tout $n \in \mathbb{N}$, la somme $S_n(x)$ est définie pour tout $x \in \mathbb{R}$. Que vaut $S_n(10)$ en fonction de n?
- 4. Calculer f(10). De façon générale, quel est le signe de f(x) pour x > 1?
- 5. Déterminer le signe de $S_n(x)$ pour x > 1 et $n \in \mathbb{N}$.
- 6. Si $(S_n(x))$ convergeait, pour x > 1, que pourrait-on alors dire de sa limite? Conclure.

Exercice \sum Déterminer la nature de la série de terme général u_n dans chacun des cas suivants :

$$1. \quad u_n = e^{\sqrt{n}}$$

$$2.u_n = \frac{n^2 - 5}{n(2n+1)}$$

3.
$$u_n = \frac{n-2}{2^n - 1}$$

$$5. \quad u_n = n \sin\left(\frac{1}{3^n}\right)$$

$$6.u_n = \frac{n}{n+1}$$

7.
$$u_n = \frac{\cos(n!)}{3^n + \cos(n!)}$$

$$8. \quad u_n = \frac{1}{\sqrt{n(n+1)}}$$

Exercice $\sum!$ Déterminer la nature de la série de terme général u_n dans chacun des cas suivants, puis calculer la valeur de la somme:

1.
$$u_n = \frac{1}{n(n+1)(n+2)}$$

$$2.u_n = \frac{6}{5^{n+2}}$$

$$3. \quad u_n = \frac{2n(n+1)}{3^n}$$

4.
$$u_n = (-1)^n \frac{n^2 + 3}{5n}$$

5.
$$u_n = (-1)^n \frac{2^n}{(n+1)!}$$

1.
$$u_n = \frac{1}{n(n+1)(n+2)}$$
 2. $u_n = \frac{6}{5^{n+2}}$ 3. $u_n = \frac{2n(n+1)}{3^n}$ 4. $u_n = (-1)^n \frac{n^2 + 3}{5^n}$ 5. $u_n = (-1)^n \frac{2^n}{(n+1)!}$ 6. $u_n = \frac{n^2 + n + 1}{n!}$ 7. $u_n = \ln\left(\frac{n^3}{(n+2)(n-1)^2}\right)$ 8. $u_n = \frac{\binom{n}{k}}{n!}$; $k \in \mathbb{N}^*$ fixé

8.
$$u_n = \frac{\binom{n}{k}}{n!}$$
 ; $k \in \mathbb{N}^*$ fixé

Variables Aléatoires Discrètes

Exercice 1 On considère un espace probabilisé $(\Omega; \mathcal{A}; \mathbb{P})$. Le système d'événements (A_n) est considéré comme étant consituté d'événements disjoints deux à deux. On pose $a_n = \mathbb{P}(A_n)$ pour $n \in \mathbb{N}$.

Dans chacun des cas qui suit, dire s'il est possible de choisir la suite $(a_n)_{n\geq n_0}$ proposée, en justifiant (les événements A_k pour $k < n_0$ seront alors traités comme négligeables par convention) :

1. On prend
$$a_n = \frac{n-1}{n!}$$
 avec $n_0 = 1$

2. On prend
$$a_n = \frac{(-1)^n (2^{2n+1})}{(2n)!}$$
 avec $n_0 = 2$.

3. On prend
$$a_n = p(1-p)^n$$
 avec $n_0 = 1$

4. On prend
$$a_n = n2^{-n}$$
 pour $n_0 = 4$

M^r HEMON

Lycée Turgot Ens-2D2 2025 / 2026

Cas discret infini : généralités

Exercice 2 Soit $\sum_{n\in\mathbb{N}} u_n$ une série absolument convergente à termes réels non tous nuls.

1. Justifier qu'il existe une variable aléatoire X sur un certain espace probabilisé et une constante c>0 telle que la loi de X soit donnée par :

$$\forall k \in \mathbb{N} \ \mathbb{P}[X = k] = c|u_k|$$

2. On considère la série $\sum_{n\in\mathbb{N}}(n^2+1)\lambda^n$ où $\lambda\in]-1;1[.$

justifier que cette série converge absolument.

3. Justifier l'existence de X variable aléatoire sur un certain espace de probabilisé pour laquelle il existe une constante c>0 telle que :

$$\forall k \in \mathbb{N} \ \mathbb{P}[X = k] = c(k^2 + 1)|\lambda|^k$$

Déterminez ensuite la constante c.

- 4. Calculer $\mathbb{E}[X]$ après en avoir justifié l'existence.
- 5. Décrire une expérience aléatoire pouvant être modélisée par la variable aléatoire X.

Exercice $\boxed{3}$ $\bullet \Theta^{C\sharp}$ D'après EML - 2014 voie E

On considère une suite $(X_n)_{n\geq 2}$ de variables aléatoires définies sur un même espace probabilisé $(\Omega; \mathcal{A}; \mathbb{P})$ et dont les lois (indépendantes) respectives sont données par :

$$\forall n \ge 2 \forall k \in [2; n+1] \quad \mathbb{P}[X_n = k] = \frac{k-1}{n^k} \binom{n+1}{k}$$

- 1. Vérifier que, pour tout $n \geq 2$ on a bien $\sum_{k=2}^{n+1} \mathbb{P}[X_n = k] = 1$
- 2. Démontrer que, pour tout $k \ge 2$ fixé on a $\lim_{n \to +\infty} \mathbb{P}[X_n = k] = \frac{k-1}{k!}$
- 3. Démonter que la série $\sum_{k\geq 2} \frac{k-1}{k!}$ converge et calculer sa somme.

On admettra alors qu'il existe une variable aléatoire Z vérifiant $Z(\Omega) = \mathbb{N} \setminus \{0; 1\}$ et pour laquelle $\mathbb{P}[Z = k] = \frac{k-1}{k!}$

- 4. Etablir la convergence de la série $\sum_{k=2}^{+\infty} k \mathbb{P}[Z=k]$ et en calculer sa valeur.
- 5. Comparer $\lim_{n\to+\infty} \mathbb{E}[X_n]$ avec $\mathbb{E}[Z]$.

Indication : On pourra vérifier que $\mathbb{P}[X_n > k] = \frac{1}{n^k} \binom{n}{k}$

Exercice 4 Soit $p \in]0;1[$. On suppose que la fonction de répartition d'une variable aléatoire X à valeurs dans \mathbb{N}^* vérifie :

$$\forall n \in \mathbb{N}^* \ F(n) = 1 - (1 - p)^n$$

Donner la loi de X.

M^r HEMON

Cas discret infini : avec les lois de référence

Exercice 5 les petits chevaux Au jeu des petits chevaux, on lance un D6 à chaque tour jusqu'à obtention d'un 6 permettant de faire sortir son premier cheval de l'écurie et, pour ainsi dire, de débuter le jeu à proprement parler.

On note T le nombre de tours écoulés au moment de la sortie du premier cheval.

Quelle est la loi de T? Déterminer $\mathbb{E}[T]$ et $\mathbb{V}[T]$.

X désigne une variable aléatoire définie sur le même espace probabilisé. Enfin, on pose Y=N-X. On suppose enfin que N,X,Y sont à valeurs entières positives et que pour tout $(n;k) \in \mathbb{N}^2$, si $k \leq n$ alors :

$$\mathbb{P}_{[N=n]}[X=k] = \binom{n}{k} \left(\frac{1}{5}\right)^k \left(\frac{4}{5}\right)^{n-k}$$

- 1. Démontrer que $X \hookrightarrow \mathcal{P}(1)$
- 2. Déterminer la loi de Y
- 3. Pour tout $(k; j) \in \mathbb{N}^2$, calculer $\mathbb{P}[X = k \cap Y = j]$ et comparer avec la valeur de $\mathbb{P}[X = k] \times \mathbb{P}[Y = j]$

Exercice $\boxed{7}$ Soit $\theta > 0$ fixé. On suppose que $X \hookrightarrow \mathcal{P}(\theta)$.

On définit $Y = \frac{1}{X+1}$. Démontrer que Y admet un espérance puis la déterminer.

Exercice 8 Polynôme à racines aléatoires

On se donne une variable aléatoire X suivant une loi de Poisson de paramètre $\lambda > 0$.

- 1. Déterminer la probabilité que $P(t) = t^2 2Xt + X$ ademtte des racines réelles distinctes.
- 2. On note S l'abscisse du sommet de la parabole représentant la fonction P. Quelle est la valeur de $\mathbb{E}[S]$?
- 3. Peut-on choisir λ pour que la probabilité que cette même parabole passe par le point de coordonnées (X;X) excède 50%?

Exercice 9 Qu'est-ce qu'un entier aléatoire?

On considère une variable aléatoire X définie sur un espace probabilisable $(\Omega ; A)$ telle que $X(\Omega) = \mathbb{N}$.

On notera p_k la valeur de $\mathbb{P}[X = k]$ pour $k \in \mathbb{N}$.

- 1. Justifier que $\lim_{n \to +\infty} p_n = 0$ et en déduire qu'il n'existe pas de loi de probabilité uniforme sur $\mathbb N$
- 2. Que pensez-vous de la phrase "on tire un entier aléatoire"?
- 3. Vérifier que X est pair constitue bien un événement et en déduire que X est impair également. On notera $[X \in 2\mathbb{N}]$ et $[X \in 1 + 2\mathbb{N}]$ respectivement ces deux événements.
 - (a) On suppose que X suit une loi géométrique de paramètre p>0. Existe-il une valeur de λ pour laquelle $\mathbb{P}[X\in 2\mathbb{N}]=\mathbb{P}[X\in 1+2\mathbb{N}]$?
 - (b) On suppose que X suit une loi de Poisson de paramètre $\lambda>0$. Existe-il une valeur de λ pour laquelle $\mathbb{P}[X\in 2\mathbb{N}]=\mathbb{P}[X\in 1+2\mathbb{N}]$?
- 4. Bernard, Polytechnicien, déclare :

"Un groupe de personnes se présente, sans que l'on puisse connaître à l'avance le nombre d'individus. La probabilité d'obtenir un nombre pair de personnes est forcément $\frac{1}{2}$ "

Que pensez-vous de cette allégation?

Couples de VAR discrètes : rappels et prolongements

Exercice 10 Soient X et Y indépendantes de lois respectives $\mathcal{B}(p)$ et $\mathcal{B}(q)$. On définit $M = \max(X; Y)$ et $N = \min(X; Y)$.

- 1. Déterminer les lois des variables aléatoires M et N.
- 2. Déterminer la loi du couple (M; N).
- 3. Déterminer Cov(M; N). Les variables aléatoires M et N sont-elles indépendantes ?

Exercice 11 Soit $n \in \mathbb{N}^*$, on note $\mathcal{U} = [1; n]^2$ et on définit (X; Y) couple de VAR en posant :

$$\forall (p;q) \in \mathcal{U} \quad \mathbb{P}[(X;Y) = (p;q)] = \frac{1}{n^2}$$

- 1. Déterminer les lois marginales de X et Y.
- 2. Calculer $\mathbb{E}[XY]$ et Cov(X;Y). Les variables X et Y sont-elles indépendantes ?

Exercice 12 On dispose de deux équilibrés : l'un à 4 faces et l'autre à 6 faces.

On définit deux expériences aléatoires :

- (\mathcal{E}) : On lance simultanément les deux dés jusqu'à obtention d'un double 1.
- (F): On lance le dé à 4 faces jusqu'à obtention d'un 1, puis effectue de même avec le dé à 6 faces.
- 1. On désigne par X le nombre total de lancers effectués associés à l'expérience (\mathcal{E}) .

Déterminer complètement la loi de X et indiquer son espérance et sa variance.

- 2. On désigne par Y le nombre total de lancers effectués associés à l'expérience (\mathcal{F}) . On définit alors T le nombre de fois où le dé à 4 faces (tétrahèdre) est lancé ainsi que C le nombre de fois où le dé à 6 faces (cube) est lancé.
 - (a) Ecrire une équation reliant T, C et Y.
 - (b) Déterminer les lois de T et C. Ces deux variables sont-elles indépendantes?
 - (c) Justifier que l'on a :

$$\forall k \in \mathbb{N}^* \quad \mathbb{P}[Y = k] = \sum_{i=1}^{k-1} \mathbb{P}[T = i] \mathbb{P}[C = k - i]$$

(d) En déduire la loi de Y et en calculer son espérance.

Exercice 13 $\bullet \Theta^{\mathbb{C}\sharp}$ Soient $X \hookrightarrow \mathcal{P}(\lambda)$ avec $\lambda > 0$ et $Y \hookrightarrow \mathcal{U}(\llbracket 1; 3 \rrbracket)$ supposées indépendantes.

Déterminer la loi, l'espérance et la variance de Z = XY. Quelle est la probabilité que Z soit paire?

Exercice 14 RàR Soient X et Y, variables aléatoires réelles indépendantes, définies sur un même espace probabilisé $(\Omega; A; \mathbb{P})$

- 1. Démontrer que si $X \hookrightarrow \mathcal{P}(\lambda)$ et $Y \hookrightarrow \mathcal{P}(\mu)$, avec $\lambda > 0$ et $\mu > 0$, alors $X + Y \hookrightarrow \mathcal{P}(\lambda + \mu)$
- 2. Démontrer que si $X \hookrightarrow \mathcal{B}(n;p)$ et $Y \hookrightarrow \mathcal{B}(k;p)$, avec $(n;k) \in \mathbb{N}^2$ et $p \in]0;1[$, alors $X+Y \hookrightarrow \mathcal{B}(n+k;p)$