Séries et VAR : corrigés

Exercice 3 1. On se propose d'écrire :

$$\sum_{k=2}^{n+1} \mathbb{P}[X_n = k] = \sum_{k=2}^{n+1} \frac{k}{n^k} \binom{n+1}{k} - \sum_{k=2}^{n+1} \frac{1}{n^k} \binom{n+1}{k}$$

puis de calculer séparemment chacune des deux sommations. Ainsi :

• On calcule d'une part :

$$\begin{split} \sum_{k=2}^{n+1} \frac{1}{n^k} \binom{n+1}{k} &= \frac{1}{n} \sum_{k=1}^{n+1} k \binom{n+1}{k} \left(\frac{1}{n}\right)^k - 1 - \frac{1}{n} \\ &= \frac{1}{n} (n+1) \left(1 + \frac{1}{n}\right)^n - 1 - \frac{1}{n} \\ &= \left(1 + \frac{1}{n}\right)^{n+1} - \left(1 + \frac{1}{n}\right) \end{split}$$

ayant utilisé, par reconnaissance d'une dérivée combinée avec un binôme de Newton :

$$\sum_{k=1}^{n+1} k \binom{n+1}{k} x^{k-1} = \frac{\partial}{\partial x} \sum_{k=0}^{n+1} \binom{n+1}{k} x^k = (1+n)(1+x)^n$$

• D'autre part :

$$\begin{split} \sum_{k=2}^{n+1} \frac{1}{n^k} \binom{n+1}{k} &=& \sum_{k=0}^{n+1} \frac{1}{n^k} \binom{n+1}{k} & -(n+1) \times \frac{1}{n} - 1 \\ &=& \left(1 + \frac{1}{n}\right)^{n+1} - \left(1 + \frac{1}{n}\right) - 1 \end{split}$$

En assemblant, on obtient:

$$\sum_{k=2}^{n+1} \mathbb{P}[X_n = k] = \left(1 + \frac{1}{n}\right)^{n+1} - \left(1 + \frac{1}{n}\right) - \left(1 + \frac{1}{n}\right)^{n+1} + \left(1 + \frac{1}{n}\right) + 1 = 1$$

2. Pour n au voisinage de l'infini, on a $\binom{n}{k} \sim \frac{n^k}{k!},$ donc :

$$\mathbb{P}[X_n = k] \equiv \frac{k-1}{n^k} \times \frac{n^k}{k!} = \frac{k-1}{k!}$$

le dernier terme ne dépend pas de n donc il s'agit bien de la limite quand n tend vers $+\infty$

3. On décompose le calcul en deux sommes (la convergence ne pose aucun problème par comparaison à une série exponentielle visible) :

D'une part :

$$\sum_{k=2}^{+\infty} \frac{1}{k!} = e - 1 - 1 = e - 2$$

d'autre part :

$$\sum_{k=2}^{+\infty} \frac{k}{k!} = \sum_{k=1}^{+\infty} \frac{1}{k!} = e - 1$$

Et ainsi, la somme de la série étudiée est (e-1)-(e-2)=1. La positivité des valeurs de $\frac{k-1}{k!}$ permet alors bien de définir la VAR notée Z dans l'énoncé.

4. On écrit:

$$\sum_{k=2}^{+\infty} k \mathbb{P}[Z=k] = \sum_{k=2}^{+\infty} \frac{k-1}{(k-1)!} = \sum_{k=2}^{+\infty} \frac{k-2}{(k-2)!} = \sum_{k=0}^{+\infty} \frac{k}{k!} = e$$

5. Nous venons en fait d'établir que $\mathbb{E}[Z] = e$.

De plus, on peut vérifier que $\mathbb{E}[X_n]=\sum_{k=0}^{n+1}\mathbb{P}[X_n>k]=1+\sum_{k=1}^{n}\mathbb{P}[X_n>k].$ Ainsi :

$$\mathbb{E}[X_n] = 1 + \sum_{k=1}^n \frac{1}{n^k} \binom{n}{k} = 1 + \left(1 + \frac{1}{n}\right)^n - 1 = \left(1 + \frac{1}{n}\right)^n \longrightarrow e$$

(limite de référence)

Les valeurs coïncident.

Le lecteur pourra développer la rédaction (notamment sur l'usage de la formumle des probabilités totales assurant bien les convergences des séries exploitées)

Exercice 1. On calcule $\mathbb{P}[X=k]$ au moyen de la formule des probabilités totales en décomposant sur $([N=n])_{n\in\mathbb{N}}$, système complet d'événements. On va obtenir (la convergence étant acquise) :

$$\mathbb{P}[X=k] = \sum_{n=0}^{+\infty} e^{-5} \frac{5^n}{n!} \binom{n}{k} \frac{4^{n-k}}{5^n} = \frac{e^{-5}}{k!} \sum_{n=k}^n \frac{4^n}{n!}$$

ayant $\binom{n}{k} = 0$ pour k > n et avec un glissement d'indices n := n + k. On reconnait la série exponentielle pour écrire :

$$\mathbb{P}[X=k] = \frac{e^{-5}}{k!}e^4 = e^{-1}\frac{1}{k!}$$

caractérisant ainsi la loi $\mathcal{P}(1)$.

2. On réécrit, pour $k \in \mathbb{N}$ donné : $\mathbb{P}[Y = k] = \mathbb{P}[X = N - k]$ et on développe par la formule des probabilités totales (mêmes argumentations) :

$$\mathbb{P}[Y = k] = \sum_{n=0}^{+\infty} \mathbb{P}[N = n] \times \mathbb{P}_{[N=n]}[X = n - k] = \sum_{n=0}^{+\infty} e^{-5} \frac{5^n}{n!} \binom{n}{n - k} \frac{4^k}{5^n}$$

En utilisant la symétrie du coefficient binomial on écrit :

$$\mathbb{P}[Y = k] = e^{-5} 4^k \sum_{n=k}^{+\infty} \binom{n}{k} \frac{1}{n!} = \frac{e^{-5} 4^k}{k!} \sum_{n=0}^{+\infty} \frac{1}{n!}$$

soit finalement $\mathbb{P}[Y=k]=e^{-5}\times e^{-1}\times \frac{4^k}{k!}=e^{-4}\frac{4^k}{k!}$, permettant de reconnaître une loi de Poisson de paramètre 4.

3. Les valeurs entières k et j étant fixées on calcule donc :

$$\begin{split} \mathbb{P}[X = k \cap Y = j] &= \mathbb{P}[X = k \cap N - X = j] = \mathbb{P}[N = k + j \cap X = k] \\ &= \mathbb{P}[N = k + j] \times \mathbb{P}_{[X = k]} = e^{-5} \frac{5^{k + j}}{(k + j)!} \times \binom{k + j}{k} \frac{4^{k + j - k}}{5^{k + j}} \\ &= e^{-5} \frac{1}{(k + j)!} \times \frac{(k + j)!}{k! j!} 4^j = e^{-5} \frac{4^j}{k!} j! \end{split}$$

Le calcul direct de $\mathbb{P}[X=k] \times \mathbb{P}[Y=j]$ fournit le même résultat en observant immédiatement que $e^{-1}e^{-4} = e^{-5}$.

Chapitre 2.II

 M^r Hemon

Exercice 13 1. On va expliciter la loi de Z en distinguant 6 cas sur la valeur $k \in \mathbb{N}$. Dans chaque étude, on utilise la formule des probabilités totales selon le système complet d'événements $(\mathbb{P}[Y=1] \; ; \; \mathbb{P}[Y=2] \; ; \; \mathbb{P}[Y=3])$ et on effacera tout cas menant à une probabilité nulle.

On rappelle de plus que, d'après les hypothèses, on a $\mathbb{P}([Y=i] \cap [X=n]) = \mathbb{P}[Y=i]\mathbb{P}[X=n]$ pour tout $(i;n) \in [1;3] \times \mathbb{N}$ et que :

$$\mathbb{P}[Y=i] = \frac{1}{3} \quad \land \quad \mathbb{P}[X=n] = e^{-\lambda} \frac{\lambda^n}{n!}$$

• $\underline{Cas\ k=6p:}$ On a $\mathbb{P}[Z=k]=\mathbb{P}[XY=6p]=\mathbb{P}\left([Y=1]\cap[X=6p]\right)+\mathbb{P}\left([Y=2]\cap[X=3p]\right)+\mathbb{P}\left([Y=1]\cap[X=2p]\right)$ Ce qui nous conduit à écrire :

$$\mathbb{P}[Z = 6p] = \frac{1}{3} \left(\frac{\lambda^{6p}}{(6p)!} + \frac{\lambda^{3p}}{(3p)!} + \frac{\lambda^{2p}}{(2p)!} \right) e^{-\lambda}$$

• $\underline{Cas\ k=6p+1:}$ On a $\mathbb{P}[Z=k]=\mathbb{P}[XY=6p+1]=\mathbb{P}\left([Y=1]\cap[X=6p+1]\right)$ Ce qui nous conduit à écrire :

$$\mathbb{P}[Z = 6p + 1] = \frac{1}{3} \frac{\lambda^{6p+1}}{(6p+1)!} e^{-\lambda}$$

• $\underline{Cas\ k=6p+2:}$ On a $\mathbb{P}[Z=k]=\mathbb{P}[XY=6p+2]=\mathbb{P}\left([Y=1]\cap[X=6p+2]\right)+\mathbb{P}\left([Y=2]\cap[X=3p+1]\right)$ Ce qui nous conduit à écrire :

$$\mathbb{P}[Z = 6p + 2] = \frac{1}{3} \left(\frac{\lambda^{6p+2}}{(6p+2)!} + \frac{\lambda^{3p+1}}{(3p+1)!} \right) e^{-\lambda}$$

• $\underline{Cas\ k=6p+3}$: On a $\mathbb{P}[Z=k]=\mathbb{P}[XY=6p+3]=\mathbb{P}\left([Y=1]\cap[X=6p+3]\right)+\mathbb{P}\left([Y=3]\cap[X=2p+1]\right)$ Ce qui nous conduit à écrire :

$$\mathbb{P}[Z=6p+3] = \frac{1}{3} \left(\frac{\lambda^{6p+3}}{(6p+3)!} + \frac{\lambda^{2p+1}}{(2p+1)!} \right) e^{-\lambda}$$

• $\underline{Cas\ k=6p+4:}$ On a $\mathbb{P}[Z=k]=\mathbb{P}[XY=6p+4]=\mathbb{P}\left([Y=1]\cap[X=6p+4]\right)+\mathbb{P}\left([Y=2]\cap[X=3p+2]\right)$ Ce qui nous conduit à écrire :

$$\mathbb{P}[Z = 6p + 4] = \frac{1}{3} \left(\frac{\lambda^{6p+4}}{(6p+4)!} + \frac{\lambda^{3p+2}}{(3p+2)!} \right) e^{-\lambda}$$

• Cas k=6p+5: On a $\mathbb{P}[Z=k]=\mathbb{P}[XY=6p+5]=\mathbb{P}\left([Y=1]\cap[X=6p+5]\right)$ Ce qui nous conduit à écrire :

$$\mathbb{P}[Z = 6p + 5] = \frac{1}{3} \frac{\lambda^{6p+5}}{(6p+5)!} e^{-\lambda}$$

Comme X et Y sont indépendantes, on peut calculer $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 2\lambda$ comme X et Y suivent des lois de référence (dont les espérances sont connues).

De même : $\mathbb{V}[Z] = \mathbb{V}[XY] = \mathbb{E}[X^2Y^2] - \mathbb{E}[XY]^2 = \mathbb{E}[X^2]\mathbb{E}[Y^2] - \mathbb{E}[X]^2\mathbb{E}[Y]^2$ d'après la formule de Koening-Huygens et comme X^2 et Y^2 sont indépendantes entre elles. Finalement :

$$\mathbb{V}[Z] = (\lambda^2 + \lambda) \left(4 + \frac{2}{3} \right) - 4\lambda^2 = \frac{2}{3}\lambda^2 + \frac{14}{3}\lambda$$

NB : si l'on ne connait pas directement les moments quadratiques de lois de référence (c'est admissible), on peut toujours les retrouver en calculant $\mathbb{E}[X^2] = \mathbb{V}[X] + \mathbb{E}[X]^2$ qui utilie des valeurs supposées connues.

 Il suffit de regrouper les cas qui nous intéressent en utilisant la formule des probabilités totales dans le même cadre qu'en 1°:

$$\mathbb{P}[Z\in2\mathbb{N}]=\mathbb{P}[Y=2]+\mathbb{P}\left([Y=1]\cap[X\in2\mathbb{N}]\right)+\mathbb{P}\left([Y=3]\cap[X\in2\mathbb{N}]\right)=\frac{1}{3}\left(1+2\sum_{p\in\mathbb{N}}e^{-\lambda}\frac{\lambda^{2p}}{(2p)!}\right)=\frac{2+e^{-2\lambda}}{3}$$