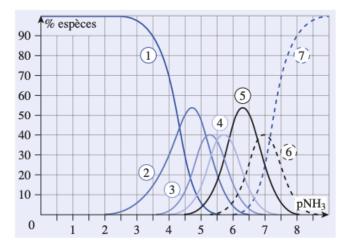
Applications directes du cours

Formation de complexes

- **1 •** Soit les espèces suivantes : $[Cu(NH_3)_4]^{2+}$; $[Co(NH_3)_6]^{3+}$; $[Ag(CN)_2]^-$; $[Fe(CN)_6]^{3-}$; $[Fe(CN)_6]^{4-}$; Cu^+ ; Cu^{2+} ; Co^{2+} ; Co^{3+} ; Ag^+ ; Fe^{3+} .
- a. L'ammoniac et l'ion cyanure sont des ligands monodentates; justifier cette affirmation.
- b. Former tous les couples donneur-accepteur de ligands possibles avec ces espèces.
- c) Donner l'expression de la constante globale β_n de chacun des complexes ainsi repérés.
- **2** L'ion oxalate ou éthanedioate $C_2O_4^{2-}$, soit ${}^-O_2C CO_2^{-}$ est un ligand bidentate ; il donne :
- avec les ions strontium (II) Sr²⁺ un complexe d'indice de coordination 2;
- avec les ions cadmium (II) Cd²⁺ un complexe d'indice de coordination 4;
- avec les ions aluminium (III) Al³⁺ un complexe d'indice de coordination 6.
- a. Préciser le sens des termes : bidentate et indice de coordination.
- b. Écrire la formule des trois complexes considérés.
- c. Donner l'expression de la constante globale de formation β_n de chacun de ces complexes.

Complexes ion fer (III) – ion fluorure


L'ion fluorure donne avec l'ion Fe³⁺ quatre complexes successifs d'indice de coordination 1, 2, 3 et 4.

Les constantes globales de formation β_i sont telles que : $\log \beta_1 = 6.0$; $\log \beta_2 = 10.7$; $\log \beta_3 = 13.7$ et $\log \beta_4 = 16.1$.

- 1 Donner l'expression des constantes de dissociation successives K_{di} des quatre complexes; déterminer numériquement ces constantes.
- 2 Tracer le diagramme de prédominance en fonction de pF = log [F⁻].
- **3** On considère une solution obtenue en mélangeant une solution de sulfate de fer (III) et une solution de fluorure de sodium. Déterminer l'espèce majoritaire dans la solution si : a) pF = 4,1; b) $[F^-] = 3,5 \cdot 10^{-3} \text{ mol } \cdot L^{-1}$.

Complexes ion cobalt (III) – ammoniac

Le graphe ci-après donne le diagramme de distribution des espèces pour les complexes amminecobalt (III) en fonction de $pNH_3 = -\log[NH_3]$, les indices de coordination allant de 1 à 6 . Les courbes tracées représentent le pourcentage de chacune des espèces contenant du cobalt (III) lorsque pNH_3 varie.

- **1** Le numéro atomique du cobalt est Z = 27.
- a. En utilisant la règle des dix-huit électrons, justifier l'existence de [Co(NH₃)₆]³⁺.
- Indiquer sa structure géométrique.
- 2 Indiquer à quelles espèces se rapportent les diverses courbes tracées.
- **3 •** Déterminer, à partir du graphe et en justifiant la méthode utilisée, les constantes de formation successives K_{fi} . En déduire les constantes globales de formation de chacun des complexes.
- 4 On considère une solution obtenue en mélangeant une solution de sulfate de cobalt (III) et une solution d'ammoniac. Déterminer, à partir du graphe, la composition de la solution pour :
- **a.** pNH₃ = 5,0; **b.** [NH₃] = 3,5. 10^{-4} mol.L⁻¹.

4 *Dismutations de complexes

L'ion argent (I) donne avec l'ion glycinate $C_2NH_4O_2^-$, noté gly^- , deux complexes :

[Ag(gly)] (log $\beta_1 = 3.5$) et [Ag(gly)₂]⁻ (log $\beta_2 = 8.4$).

- **1** Déterminer les constantes successives de dissociation des deux complexes.
- **2** Tracer le diagramme de prédominance en fonction de $pgly = -\log [gly]$.
- 3 En déduire que l'un des complexes se dismute, c'est-à-dire qu'il donne naturellement deux espèces, l'une d'indice de coordination plus grand que le sien, et l'autre moins grand. Calculer la constante de cette dismutation. SOS

SOS: Revoir si nécessaire le cas des complexes argent (I)ammoniac (doc. 5).

Complexe oxyquinoléatoplomb (II)

L'ion oxyquinoléate $C_9H_6NO^-$, notée Oq^- , donne avec les ions plomb (II) un complexe $[PbOq]^+$ de constante de formation β , avec $\log \beta = 9.0$.

- **1** On prépare 250 mL de solution en dissolvant $1,0.10^{-2}$ mol d'oxyquinoléate de sodium NaOq et $5,0.10^{-3}$ mol de nitrate de plomb (II) $Pb(NO_3)_2$. Déterminer la composition de la solution à l'équilibre.
- **2 •** Même question pour 200 mL de solution préparée en dissolvant $m_1 = 1,67$ g d'oxyquinoléate de sodium et $m_2 = 1,32$ g de nitrate de plomb (II). **SOS**

SOS: Calculer les masses molaires des sels qui ont été dissous pour préparer cette solution.

6 Complexe salicylatoaluminium (III)

On mélange 50,0 mL de solution de salicylate de sodium $Na_2C_7H_4O_3$ de concentration C_1 avec 50,0 mL de solution de sulfate d'aluminium $Al_2(SO_4)_3$ de concentration C_2 .

On notera sal^{2-} l'ion salicylate. Sachant que $\log \beta([Al(sal)]^+) = 14,1$, déterminer la composition de la solution obtenue dans les trois cas suivants : SOS

a.
$$C_1 = 4,0.10^{-2} \text{ mol. L}^{-1}$$
 et $C_2 = 6,0.10^{-2} \text{ mol. L}^{-1}$;
b. $C_1 = 8,0.10^{-2} \text{ mol. L}^{-1}$ et $C_2 = 4,0.10^{-2} \text{ mol. L}^{-1}$;
c. $C_1 = 6,0.10^{-2} \text{ mol. L}^{-1}$ et $C_2 = 2,0.10^{-2} \text{ mol. L}^{-1}$.

SOS: Pour calculer les concentrations apportées, prendre en compte la dilution lors du mélange et la formule des sels dissous, en particulier Al₂(SO₄)₃.

Complexe thiosulfatofer (III)

Déterminer la composition de la solution obtenue en mélangeant 20,0 mL de solution de nitrate de fer (III) à $2.0 \cdot 10^{-2} \text{ mol} \cdot L^{-1}$ et 20,0 mL de solution de thiosulfate de sodium Na₂S₂O₃ à 3,0 · 10⁻² mol · L⁻¹.

Donnée: $\log \beta([FeS_2O_3]^+) = 2,1$.

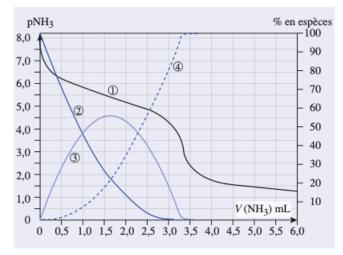
8 Complexe perchloratofer (III)

On prépare 100 mL de solution en dissolvant, dans de l'eau, une quantité n_1 de nitrate de fer (III) et une quantité n_2 de perchlorate de sodium NaClO₄. Déterminer la composition de la solution dans les trois cas suivants :

a.
$$n_1 = 2,0.10^{-3}$$
 mol et $n_2 = 3,0.10^{-3}$ mol;
b. $n_1 = 2,0.10^{-3}$ mol et $n_2 = 2,0.10^{-3}$ mol;
c. $n_1 = 3,0.10^{-3}$ mol et $n_2 = 2,0.10^{-3}$ mol.
Donnée: $\log \beta([\text{FeClO}_4]^{2+}) = 1,15$.

9 Complexes de l'ion manganèse (II) avec les ions oxalate

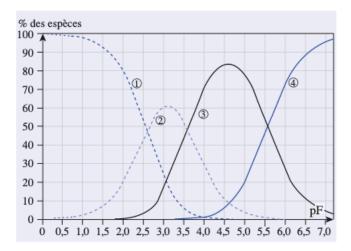
L'ion Mn²⁺ donne avec les ions oxalate $C_2O_4^{2-}$ deux complexes : [Mn(C_2O_4)] et [Mn(C_2O_4)₂]²⁻ tels que log β_1 = 3,82 et log β_2 = 5,25 .


- 1 Nommer ces deux complexes.
- **2** Tracer le diagramme de prédominance des espèces en fonction de $pL = -\log([C_2O_4^{2-}])$.
- **3** Déterminer la composition de la solution obtenue en dissolvant dans 100 mL d'eau une quantité n_1 de sulfate de manganèse (II) et une quantité n_2 d'oxalate de sodium dans les deux cas suivants :

a.
$$n_1 = 4,0.10^{-3}$$
 mol et $n_2 = 2,0.10^{-3}$ mol;
b. $n_1 = 2,0.10^{-3}$ mol et $n_2 = 8,0.10^{-3}$ mol. **SOS**

SOS: Vu les valeurs de β_1 et β_2 , considérer qu' une fois formé, l' ion $[Mn(C_2O_4)_2]^{2-}$ se dissocie partiellement en $[MnC_2O_4]$ et $C_2O_4^{2-}$.

Complexes du cuivre (I)


Le document ci-après représente l'évolution de pNH₃ = $-\log [{\rm NH_3}]$ et du pourcentage des espèces Cu⁺, [CuNH₃]⁺ et [Cu(NH₃)₂]⁺ lors de l'addition d'un volume $V({\rm NH_3})$ d'une solution d'ammoniac à 0,30 mol.L⁻¹ à un volume V=10,0 mL d'une solution contenant des ions cuivre (I) à 0,050 mol.L⁻¹.

- Identifier chacun des graphes.
- 2 En déduire, par simple lecture sur le graphe, les constantes de formation successives des deux complexes.
- **3** Déterminer la composition de la solution lorsque : **a.** $V(NH_3) = 1.5 \text{ mL}$; **b.** $V(NH_3) = 3.0 \text{ mL}$.

Complexes du fer (III) avec les ions fluorure

Le document ci-dessous représente l'évolution en fonction de pF = $-\log [F^-]$ du pourcentage des espèces F^- , Fe^{3+} , $[FeF]^{2+}$ et $[FeF_2]^+$ lors de l'addition d'une solution de fluorure de sodium à 0,30 mol . L⁻¹ à un volume V = 10 mL d'une solution de chlorure de fer (III) à 0,010 mol . L⁻¹.

- Identifier chacun des graphes.
- 2 En déduire, par simple lecture sur le graphe, les constantes de formations successives des deux complexes.
- **3** Déterminer, par le calcul, la composition de la solution obtenue lorsque l'ajout de solution de fluorure de sodium est de 1,0 mL. Vérifier, à l'aide du graphe, la cohérence des résultats obtenus.

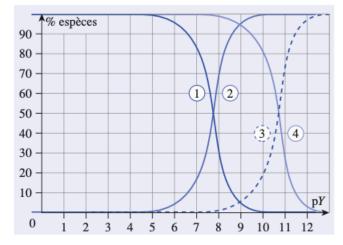
Complexations compétitives de l'ion cobalt (II)

L'ion cobalt (II) donne avec l'ion oxalate $C_2O_4^2$ un complexe hexacoordiné $[Co(C_2O_4)_3]^{4-}$ tel que $\log \beta_3 = 19,2$. Cet ion donne aussi, avec l'éthylènediamine $H_2NCH_2CH_2NH_2$ (noté en) un complexe hexacoordiné $[Co(en)_3]^{2+}$ tel que $\log \beta_3 = 13,9$.

- **1** Justifier, à partir de la structure des ligands $C_2O_4^{2-}$ et $H_2NCH_2CH_2NH_2$, le fait que les deux complexes soient hexacoordinés. SOS
- 2 Préciser, sur un schéma, la structure géométrique des ions complexes. Ces ions sont-ils chiraux ?
- **3** À 100 mL de solution contenant le complexe $[Co(en)_3]^{2+}$ à la concentration de 2,0 · 10^{-2} mol · L^{-1} , on ajoute, sans dilution, 1,0 · 10^{-2} mol d'oxalate de sodium Na₂C₂O₄ .
- a. Écrire l'équation de la réaction qui se produit.
- b. Déterminer sa constante.
- c. En déduire la composition de la solution.

SOS: Revoir le paragraphe 1.1.

*Complexations compétitives de l'ion mercure (II)


L'ion mercure (II) donne, avec les ions thiocyanate SCN⁻, un complexe tétracoordiné de constante de formation globale $\beta_4 = 10^{21,7}$ et, avec les ions cyanure CN⁻, un complexe éga-

lement tétracoordiné de constante de formation globale $\beta'_{4}=10^{42,5}$.

- 1 Écrire les équations de formation globale de ces deux complexes.
- **2 •** On mélange 50,0 mL de solution de nitrate de mercure (II) à $1,00 \cdot 10^{-2}$ mol·L⁻¹ et 50,0 mL de solution de thiocyanate de potassium à $5,00 \cdot 10^{-2}$ mol·L⁻¹. Déterminer la composition du mélange obtenu.
- **3** À la solution obtenue au **2**), on ajoute un volume de 100,0 mL de solution de cyanure de potassium de concentration $5,00 \cdot 10^{-2}$ mol·L⁻¹.
- a. Écrire l'équation de la réaction qui se produit ; déterminer sa constante ;
- b. en déduire la composition de la solution finale.

14 *Étude de compétition par simulation

Le document ci-après donne le diagramme de distribution des espèces présentes dans une solution obtenue en ajoutant progressivement une solution d'E.D.T.A. contenant des ions complexants notés Y^{4-} à une solution contenant un mélange équimolaire en ions baryum Ba^{2+} et en ions calcium Ca^{2+} . Les courbes représentent le pourcentage de chacune des espèces Ca^{2+} , Ba^{2+} , $[CaY]^{2-}$ et $[BaY]^{2-}$ en fonction de $pY = -\log [Y^{4-}]$. L'expérience montre que le complexe $[CaY]^{2-}$ est plus stable que le complexe $[BaY]^{2-}$.

- 1 Indiquer à quelles espèces se rapportent les diverses courbes tracées, SOS
- **2** En déduire les constantes de formation des deux complexes et tracer un diagramme de prédominance en pY.
- **3** Quelle espèce prédomine, dans chaque couple, pour pY = 7 et pY = 10?
- **4** La réaction de l'E.D.T.A. avec les ions Ca²⁺ et Ba²⁺ peut être utilisée pour doser un mélange de ces ions. On considère un mélange équimolaire d'ions Ca²⁺ et Ba²⁺ auquel on ajoute une solution contenant des ions Y⁴⁻:

- a. Quel ion est dosé en premier ?
- b. Est-il possible de doser 95 % de ces ions sans doser plus de 5 % des autres ?
- **5** À 100 mL de solution contenant $1,0.10^{-3}$ mol de $[BaY]^{2-}$, on ajoute, sans dilution, $1,5.10^{-3}$ mol de chlorure de calcium. Quelle est la composition finale du mélange en ions Ca^{2+} , Ba^{2+} , $[CaY]^{2-}$ et $[BaY]^{2-}$?

SOS: À stæchiométrie identique, plus un complexe est stable, plus son pK_d est élevé.

Complexe acétatofer (III) ; influence du pH

On mélange 50,0 mL de solution de nitrate de fer (III) à $0,100 \text{ mol. L}^{-1}$ et 50,0 mL de solution d'acétate de sodium à $0,100 \text{ mol. L}^{-1}$.

- 1 Déterminer la composition de la solution à l'équilibre.
- 2 On ajoute, sans dilution, de l'acide chlorhydrique.
- Décrire les phénomènes observés.
- **b.** Calculer la quantité d'acide chlorhydrique qu'il faut ajouter pour que moins de 1 % de fer (III) soit complexé.
- c. Déterminer le pH de la solution ainsi obtenue.

Données: $pK_A (CH_3COOH / CH_3COO^-) = 4.8$; $log \beta([Fe(CH_3COO)]^{2+}) = 3.2$.

16 Titrage de Zn²⁺ par l'E.D.T.A.

L'acide Éthylène Diamine TétraAcétique (E.D.T.A.) est un tétraacide dont les pK_A valent, dans l'ordre : 2,0 ; 2,7 ; 6,2 et 10,2.

Dans 100,0 mL de solution tampon ammoniacal de pH = 10,2, on introduit, sans variation de volume, des ions Zn^{2+} de façon à obtenir une concentration en Zn^{2+} égale à 0,010 mol.L⁻¹ et on la dose à l'aide d'une solution à 0,050 mol.L⁻¹ en ions Y^{4-} . La constante de dissociation du complexe $[ZnY]^{2-}$ vaut $K_d = 5,0.10^{-17}$.

- 1 Écrire l'équation de la réaction du titrage et calculer sa constante. SOS
- **2** Déterminer le volume équivalent $V_{\rm E}$ versé à l'équiva-
- **3** Exprimer pY = f(V) pour $V < V_E$, $V > V_E$ et $V = V_E$.
- **4** Tracer le graphe correspondant ; on calculera les valeurs de pY pour $V = 0.5 V_{\rm E}$; $0.99 V_{\rm E}$; $1.01 V_{\rm E}$ et $2 V_{\rm E}$.
- **5** Dans ce titrage, on veut utiliser un indicateur coloré caractéristique des ions Zn²⁺ qui vire du rose au bleu lorsqu'on atteint l'équivalence. Cet indicateur, noté *Ind*³⁻, donne avec les ions Zn²⁺ un complexe [Zn*Ind*]⁻.

Indiquer, en le justifiant, la couleur des ions Ind^{3-} et $[ZnInd]^-$. Calculer la constante de dissociation de $[ZnInd]^-$ en admettant qu'à l'équivalence du titrage les deux formes colorées sont en concentrations égales.

SOS: **1** • Pour cette question, on ne considèrera que la réaction entre Y^{4-} et Zn^{2+} .

3 • À pH = 10,2 pour $V \ge V_E$, on a [HY³⁻] = [Y⁴⁻].

Utilisation des acquis

Complexe cuivre (II) – ammoniac

L'ion cuivre (II) donne en solution aqueuse avec l'ammoniac plusieurs complexes de formule $[\operatorname{Cu}(\operatorname{NH}_3)_n]^{2+}$, n allant de 1 à 4, tels que $\log \beta_1 = 4,1$; $\log \beta_2 = 7,6$; $\log \beta_3 = 10,5$ et $\log \beta_4 = 12,6$; en outre pK_A ($\operatorname{NH}_4^+/\operatorname{NH}_3$) = 9,2.

- 1 Placer, sur un axe gradué en pNH₃, les domaines de prédominance des espèces contenant du cuivre (II).
- **2 •** On mélange 10,0 mL de solution de sulfate de cuivre (II) à 0,10 mol \cdot L⁻¹ et 10,0 mL d'ammoniac à 0,60 mol \cdot L⁻¹ . Préciser la formule du complexe formé majoritairement.
- **3** Déterminer, en considérant qu'il ne se forme que ce complexe, les concentrations en ce complexe, en Cu²⁺ et en NH₃ dans le mélange.
- 4 Calculer alors le pH de la solution. SOS

SOS: Considérer que le pH est imposé par l'ammoniac NH₃ libre en solution.

1 Complexes et pH

Soit une solution S, obtenue en mélangeant 500 mL de solution d'ammoniac NH₃ à 2,0.10⁻³ mol.L⁻¹ et 500 mL de solution de chlorure d'ammonium NH₄Cl à 2,0.10⁻³ mol.L⁻¹.

- 1 Calculer le pH de S.
- 2 On ajoute, sans dilution, à cette solution, 0,40 mol de nitrate d'argent.
- a. Déterminer les concentrations de toutes les espèces en solution.
- b. En déduire le pH de la solution ainsi obtenue. SOS

Données: $pK_A (NH_4^+/NH_3) = 9.2$;

 $\log \beta_1([Ag(NH_3)]^+]) = 3.3 ; \log \beta_2([Ag(NH_3)_2]^+) = 7.2.$

SOS: Considérer que le pH est imposé par l'ammoniac NH₃ libre en solution.

19 Complexes ammoniac-mercure (II) ; influence du pH

On prépare 1,00 L de solution en dissolvant, dans de l'eau, $1,0.10^{-2}$ mol de nitrate de mercure (II) et 1,00 mol d'ammoniac.

- 1 Calculer les concentrations de toutes les espèces présentes en solution ; en déduire le pH de la solution.
- **2** On ajoute à cette solution, sans dilution, une quantité *n* d'acide chlorhydrique.
- a. Décrire les phénomènes observés.
- **b.** Déterminer *n* tel que $[[Hg(NH_3)_2]^{2+}] = [[Hg(NH_3)_3]^{2+}]$.
- c. En déduire le nouveau pH.

Données: $pK_A (NH_4^+/NH_3) = 9.2$; $\log \beta_2 ([Hg(NH_3)_2]^{2+}) = 18$; $\log \beta_3 ([Hg(NH_3)_3]^{2+}) = 20$.

Complexes du nickel (II) avec l'éthylènediamine

L'éthylènediamine $H_2N-CH_2-CH_2-NH_2$, notée en, est un ligand bidentate. Ce ligand donne, avec les ions nickel (II) trois complexes : $[Ni(en)]^{2+}$; $[Ni(en)_2]^{2+}$ et $[Ni(en)_3]^{2+}$ de constantes globales de formation $\log \beta_1 = 7,5$; $\log \beta_2 = 12,8$ et $\log \beta_3 = 16,5$.

- **1** Justifier le caractère bidentate de *en*. Le complexe $[Ni(en)_3]^{2+}$ a une structure octaédrique. Est-il chiral ?
- **2** Placer, sur un diagramme en $p(en) = -\log [en]$, les domaines de prédominance de Ni²⁺ et de ses complexes.
- **3** Dans 20,0 mL de solution de Ni^{2+} à 0,10 mol.L⁻¹, on ajoute 20,0 mL de solution d'ethylènediamine à 0,050 mol.L⁻¹. Calculer les concentrations des espèces à l'équilibre.
- **4** Dans 20,0 mL de solution de Ni^{2+} à 0,10 mol · L⁻¹ , on ajoute à présent 30,0 mL de solution d'éthylènediamine à 0,20 mol · L⁻¹.

Même question qu'en 3).

Exercices en relation avec les travaux pratiques

Titrage des ions chlorure par complexation

On verse progressivement, dans $V_0 = 20,0$ mL de solution de chlorure de sodium à $C = 5,0.10^{-2}$ mol.L⁻¹, un volume variable V de solution de nitrate de mercure (II) à $5,0.10^{-2}$ mol.L⁻¹. On admettra que, dans les conditions du titrage, il ne peut se former qu'un seul complexe : [HgCl₂] de constante de dissociation $K_d = 6,3.10^{-14}$.

- 1 Écrire l'équation de la réaction de complexation ; donner sa constante d'équilibre et conclure.
- 2 Déterminer le volume V_E versé à l'équivalence.
- **3** Donner, pour les différentes étapes du titrage, les expressions des concentrations des diverses espèces présentes en fonction de V, V_0 , C et K_d . SOS

- **4** Calculer, en faisant les approximations nécessaires, les valeurs de pHg = $-\log [Hg^{2+}]$ pour les volumes V (en mL) suivants : 1,0;5,0;9,0;9,5;10,0;10,5;12,0;15,0 et 20,0.
- **5** Tracer pHg = f(V).

SOS: 1) Pour $0 < V < V_E$, $V = V_E$ et $V > V_E$, établir des tableaux d'avancement en quantité de matière.

Titrage de Ag⁺ par le thiosulfate

L'ion argent (I) donne avec l'ion thiosulfate $S_2O_3^{2-}$ deux complexes : $[Ag(S_2O_3)]^-$ et $[Ag(S_2O_3)_2]^{3-}$ tels que $\log \beta_1 = 8,80$ et $\log \beta_2 = 13,5$.

À $V_0 = 10,0$ mL de solution de nitrate d'argent à $C_0 = 0,050$ mol. L⁻¹, on ajoute, à la burette, un volume V de thiosulfate de sodium à C = 0,050 mol. L⁻¹. On admettra que, dans ces conditions, la formation des deux complexes est successive; on notera $pL = -\log[S_2O_3^{2-}]$.

- Déterminer les volumes équivalents V_{E1} et V_{E2}.
- 2 Écrire les équations des réactions qui se produisent pour :
- **a.** $0 < V < V_{E1}$; **b.** $V_{E1} < V < V_{E2}$.
- **3** Déterminer, si c'est possible, pL pour V = 0; V_{E1} et V_{E2} . SOS
- **4** Exprimer, puis tracer pL = f(V) pour :
- **a.** $0 < V < V_{E1}$; **b.** $V_{E1} < V < V_{E2}$; **c.** $V > V_{E2}$.

SOS: Pour $V = V_{E1}$, la réaction à considérer est la dismutation de $[Ag(S_2O_3)]^-$ et pour $V = V_{E2}$, c'est la dissociation de $[Ag(S_2O_3)_2]^{3-}$ en $[Ag(S_2O_3)]^-$ et $S_2O_3^{2-}$.

Titrage d'un mélange de cations

L'ion oxyquinoléate $C_9H_6NO^-$, noté Oq^- , donne avec les ions plomb (II) et magnésium des complexes, de constantes de formation telles que :

 $\log \beta([\text{Pb}(Oq)]^+) = 9,0$ et $\log \beta'([\text{Mg}(Oq)]^+) = 4,7$. Une solution S contient du nitrate de plomb à $C_1 = 8,0.10^{-2} \text{ mol.L}^{-1}$ et du nitrate de magnésium à $C_2 = 5,0.10^{-2} \text{ mol.L}^{-1}$.

À $V_1 = 10,0$ mL de solution S, on ajoute à la burette un volume V de solution d'oxyquinoléate de sodium, NaOq, de concentration C = 0,10 mol.L⁻¹.

- **1** Tracer les domaines de prédominance de Pb^{2+} , $[Pb(Oq)]^+$, Mg^{2+} et $[Mg(Oq)]^+$ en fonction de $pOq = -\log[Oq]$.
- 2 Quelles réactions se produisent quand V croît ?
- **3** Déterminer les deux volumes équivalents $V_{\rm E1}$ et $V_{\rm E2}$.
- **4** Exprimer pOq = f(V) pour :
- **a.** $0 < V < V_{E1}$; **b.** $V_{E1} < V < V_{E2}$; **c.** $V > V_{E2}$.
- **5** Déterminer pOq pour V_{E1} et V_{E2} , puis tracer pOq = f(V).