Colle sur le chapitre n°3

« Les complexes (1) »

En vrac: Vrai ou faux?

- 1) Deux complexes dont la somme et le produit sont réels, sont réels.
- 2) Les racines carrées de *i* sont : \sqrt{i} et $-\sqrt{i}$
- 3) Le nombre complexe 0 est de module et d'argument nuls
- 4) L'équation $e^z = -1$ implique que $z=i\pi$
- 5) On a: $\forall (a,b) \in \mathbb{C}^2$, $a+ib=0 \Rightarrow a=b=0$

Exercice n°1

- 1) a) Donner la forme trigonométrique de 1+i
 - b) En déduire une expression simple de $(1+i)^n + (1-i)^n$ pour $n \in \mathbb{N}$
- 2) Donner les parties réelle et imaginaire de z = $\frac{(1+i)^4}{(1-i)^3} + \frac{(1-i)^4}{(1+i)^3}$

Exercice n°2

On considère l'équation suivante d'inconnue $z \in \mathbb{C}$: $z^3 + (1-3i)z^2 - (6-i)z + 10i = 0$

- 1) Montrer qu'il existe un unique réel x, à déterminer, solution de l'équation précédente.
- 2) Déterminer des complexes α *et* β tels que :

$$z^3 + (1 - 3i)z^2 - (6 - i)z + 10i = (z-x)(z^2 + \alpha z + \beta)$$

3) En déduire la résolution de $z^3 + (1 - 3i)z^2 - (6 - i)z + 10i = 0$

Exercice n°3

Soit
$$(a,x) \in \mathbb{R}^2$$
, et $n \in \mathbb{N}^*$, calculer $S = \sum_{k=0}^{n-1} \cos(a + kx)$

Exercice n°4

- 1) Résoudre de deux façons l'équation d'inconnue $z \in \mathbb{C}$: $z^2 = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$
- 2) En déduire les valeurs exactes de $\cos(\frac{\pi}{8})$ et $\sin(\frac{\pi}{8})$

Problème:

Le but du problème est le calcul de la valeur exacte de $\cos(\frac{2\pi}{5})$

On considère l'équation (E) : $z^5 - 1 = 0$

- 1) Résoudre (E) dans C, en calculant les racines sous forme exponentielle
- 2) En déduire les solutions de (E) sous forme trigonométrique
- 3) On va chercher à présent à exprimer les solutions de (E) à l'aide de racines carrées.
 - a) Justifier l'existence d'un polynôme Q tel que pour tout z de \mathbb{C} , $z^5-1=(z-1)Q(z)$
 - b) Déterminer la fonction Q précédente
 - c) Déterminer les réels a, b et c tels que pour tout complexe z non nul, $\frac{Q(z)}{z^2} = a(z + \frac{1}{z})^2 + b(z + \frac{1}{z}) + c$
 - d) Résoudre l'équation $aZ^2+bZ+c=0$ à l'aide de racines carrées.
 - e) En déduire la résolution de l'équation Q(z) = 0 à l'aide de racines carrées.
 - f) Donner la valeur de $\cos(\frac{2\pi}{5})$