Colle sur le chapitre n°5

« Complexes (2) »

En vrac:

- 1) Soit x un réel tel que $\tan(\frac{x}{2}) = \sqrt{2}$, peut-on déterminer la valeur de $\cos(x)$? Si oui, la préciser !
- 2) Soit $x \in]0,2\pi[$, simplifier l'écriture de $\frac{e^{inx}-1}{e^{ix}-1}$ à l'aide d'un dénominateur réel.
- 3) Soit r > 0, et soit $z = re^{it}$, déterminer le module de e^z
- 4) Soit r > 0, et soit $z=re^{it}$, déterminer un argument de e^z

Exercice n°1

Soit
$$j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

- 1) Calculer j² et en déduire que : $1+j+j^2=0$, $j^3=1$ et $\frac{1}{j}=j^2=\bar{j}$
- 2) Mettre sous forme algébrique $(1+j)^6$
- 3) Calculer $j^{365} + j^{441} + j^{1000}$

Exercice n°2

Linéariser les expressions suivantes :

- 1) $sin^4(2x)$
- 2) $\sin(x)\cos(2x)$

Exercice n°3

Soit n un entier différent de 0 et de 1, et $z \in \mathbb{C}$, on pose $w = e^{\frac{2i\pi}{n}}$ et $S = \sum_{k=0}^{n-1} (z + w^k)^n$

Calculer S

Exercice n°4

Soit $w=e^{\frac{2i\pi}{5}}$, on pose $\alpha=w+w^4$ et $\beta=w^2+w^3$

- 1) Justifier que $1+w+w^2+w^3+w^4=0$
- 2) En déduire les valeurs de $\alpha + \beta$ et $\alpha\beta$
- 3) En déduire que α et β sont les racines d'un trinôme du second degré que l'on précisera
- 4) En déduire $\cos(\frac{2\pi}{5})$

Problème:

Les 3 questions sont indépendantes...

- 1) Soit θ un réel, linéariser, complètement, $\sin^3(\theta)\cos(\theta)$
- 2) Résoudre pour $z \in \mathbb{C}$, $e^{2z} = 4i$
- 3) Soit n un entier naturel non nul, on pose $S_n = \sum_{k=0}^n {n \choose k} \cos(\frac{k\pi}{3})$

Montrer que $S_n = 3^{n/2} \cos(\frac{n\pi}{6})$